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Óscar Rivero and Pol Torrent 11

A geometric application of Runge’s Theorem
Ildefonso Castro-Infantes 21

On the concept of fractality for groups of automorphisms of
a regular rooted tree
Jone Uria-Albizuri 33

Stochasticity conditions for the general Markov model
Marina Garrote 45



AN ELECTRONIC JOURNAL OF THE

SOCIETAT CATALANA DE MATEMÀTIQUES
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Resum (CAT)
Motivat pel principi d’incertesa, el propòsit d’aquest treball és el de trobar el

valor dels nombres L(N) = maxx∈CN\{0} min
{

Z (x), Z (x̂)
}

, on x̂ i Z (x) denoten

la transformada de Fourier discreta i el nombre de components nul·les de x ,

respectivament. Dit d’una altra manera, ja que el principi d’incertesa ens assegura

que Z (x) és inversament proporcional a Z (x̂), estudiem el millor balanç que hi pot

haver entre aquests dos nombres.

Abstract (ENG)
Motivated by the uncertainty principle, the purpose of this work is to find the

value of the numbers L(N) = maxx∈CN\{0} min
{

Z (x), Z (x̂)
}

, where x̂ and Z (x)

denote the discrete Fourier transform and the number of null components of x ,

respectively. In other words, since the uncertainty principle ensures that Z (x) is

inversely proportional to Z (x̂), we study the best possible balance between these

two numbers.
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Maximal number of null components of a vector and its DFT

1. Introduction

In quantum mechanics, the uncertainty principle (due to Heisenberg, 1927) is a very basic result, asserting
that we cannot determine the position and the momentum of a particle at the same time; in particular,
the more precisely the position of a particle is determined, the less accurate its momentum can be known
(and vice versa).

In mathematics there are many versions of this result, but the most remarkable one is the following:
suppose that we have a function f ∈ L2(R). Then, we cannot arbitrarily concentrate both f and its Fourier
transform, namely f̂ . Concretely, one of its many generalizations states that if f is practically zero outside
a measurable set T , and f̂ is practically zero outside a measurable set S , then |T | · |S | ≥ 1− δ, where δ is
a small number which depends on the meaning of the phrase “practically zero” (for an accurate statement,
see [4, Thm. 2]).

The version of this principle that we are going to deal with is the discrete one, i.e., for finite-dimensional
vectors x ∈ CN . The discrete Fourier transform (DFT) of x = (x0, x1, ... , xN−1) is defined term-wise as

x̂j =
N−1∑
k=0

xke−2πijk/N , j = 0, 1, ... , N − 1,

or it can also be defined as the linear map
x̂ = ΩNx , (1)

where ΩN is the so-called N-dimensional Fourier matrix, defined as ΩN = (ωj ,k), ωj ,k = e−2πijk/N , for
0 ≤ j , k ≤ N − 1. If we set H(x) :=

∣∣{0 ≤ n ≤ N − 1 : xn 6= 0}
∣∣, then the discrete uncertainty principle

states the following:

Theorem 1.1 (Donoho–Stark, [4]). H(x) · H(x̂) ≥ N.

Once we know that we cannot concentrate arbitrarily the nonzero elements of a vector and its discrete
Fourier transform (DFT) on very few components, we may be interested on the greatest number of null
components that we can find on x and x̂ .

The goal of this paper is to determine the value of

L(N) := max
x∈CN\{0}

min
{

Z (x), Z (x̂)
}

,

where Z (x) is the number of null components of x or, equivalently, Z (x) = N −H(x). The numbers L(N)
obviously depend on N but, furthermore, we will see that they strongly depend on the decomposition of
N as a product of two numbers (see Theorem 2.4 below). For certain values of N, such as N = n2 or
N = 2n, we will be able to give a formula for L(N). However, finding a closed expression for all N is still
an open problem. Despite of this fact, we are going to find an algorithm that will allow us to determine
L(N) for every N.

2. First approach: bounds for L(N)

We are going to determine upper and lower bounds for L(N); in some very special cases those will coincide,
yielding an equality. We start with a trivial upper bound being a direct consequence of Theorem 1.1.

http://reportsascm.iec.cat2
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Proposition 2.1. For all N, we have L(N) ≤ N −
√

N.

Proof. Suppose that there exists x ∈ CN such that min
{

Z (x), Z (x̂)
}
> N −

√
N. Then,

H(x) = N − Z (x) <
√

N, H(x̂) = N − Z (x̂) <
√

N,

and we conclude that H(x)H(x̂) < N, which contradicts Theorem 1.1.

Our next task is to start finding lower bounds for L(N). The next result will provide a lower bound that
will be sharp in general. However, there are special cases in which it will coincide with the bound given in
Proposition 2.1.

Theorem 2.2. (i) Let N > 3 be non-prime and suppose that N = m · n, with m ≥ n. Then,

L(N) ≥ max
{

K : m|K , K ≤ N −
√

N
}

= m(n − 1). (2)

(ii) Among all the possible decompositions N = m · n, with m ≥ n, the greatest lower bound of L(N)
that can be obtained from equation (2) is given when m − n is minimized.

Proof. Consider the sequence

xj = xn
j =

{
1, if j = k · n, for k = 0, ... , m − 1,
0, otherwise.

We observe that Z (x) = N −m = m(n − 1). Now let us compute x̂ . Suppose that k ∈ {0, ... , N − 1} is
such that k = m · l , i.e., m divides k. Then,

x̂k =
N−1∑
j=0

xje
−2πijk/N =

m−1∑
s=0

xs·ne−2πisnk/(mn) =
m−1∑
s=0

e−2πisml/m =
m−1∑
s=0

1 = m.

On the other hand, if m does not divide k , then k = m · q + d , with d 6= 0, and

x̂k =
N−1∑
j=0

xje
−2πijk/N =

m−1∑
s=0

xs·ne−2πisn(mq+d)/(nm) =
m−1∑
s=0

e−2πisnmq/(nm)e−2πisnd/(nm)

=
m−1∑
s=0

e−2πisd/m =
1− e−2πidm/m

1− e−2πid/m
=

1− 1

1− e−2πid/m
= 0.

In the last expression the denominator can never vanish, since 0 < d ≤ m − 1. We also note that
x̂ = x̂n = m · xm. Therefore, Z (x̂) = N − n = n(m − 1). Since we are assuming m ≥ n, it follows that
m(n−1) ≤ n(m−1), so we have found a vector x = xn ∈ CN\{0} such that min

{
Z (x), Z (x̂)

}
= m(n−1).

This implies that L(N) ≥ m(n − 1), proving (i).

To see (ii), suppose that N = m · n = m0 · n0, with m ≥ n and m0 ≥ n0. Also, assume that
m − n ≤ m0 − n0. Under these conditions we have that m0 ≥ m ≥ n ≥ n0. We want to prove that

m(n − 1) ≥ m0(n0 − 1).

But this happens if and only if N −m ≥ N −m0, which is obviously true, since m0 ≥ m.

3Reports@SCM 2 (2016), 1–10; DOI:10.2436/20.2002.02.6.



Maximal number of null components of a vector and its DFT

As an example to illustrate this result, we consider N = 30 = 6 · 5 = 2 · 15. Then:

Z
(
x5
)

= 30− 6 = 24, Z
(
x̂5
)

= Z
(
x6
)

= 30− 5 = 25,

Z
(
x2
)

= 30− 15 = 15, Z
(
x̂2
)

= Z
(
x15
)

= 30− 2 = 28.

We can observe that min
{

Z
(
x5
)
, Z
(
x6
)}

= 24 and min
{

Z
(
x2
)
, Z
(
x15
)}

= 15. Hence, L(30) ≥ 24.

Moreover, by Proposition 2.1, it holds that L(30) ≤
⌊
30−

√
30
⌋

= 24, where b·c denotes the floor
function. Therefore, the conclusion is that L(30) = 24. As we are going to see, there are certain N for
which we can determine L(N) explicitly.

Corollary 2.3. (i) If N = n2 for some n, then L(N) = N −
√

N = n2 − n = n(n − 1);

(ii) if N = n(n − 1) for some n, then L(N) =
⌊
N −

√
N
⌋

= n(n − 2).

Proof. By Theorem 2.2, we have that L(N) ≥ N −
√

N = n(n − 1). On the other hand, Proposition 2.1
tells us that L(N) ≤ N −

√
N. This proves (i).

To see (ii), again by Theorem 2.2, L(N) ≥ n(n − 2). Moreover, we have that⌊
n(n − 1)−

√
n(n − 1)

⌋
= n(n − 2)

m

n(n − 2) ≤ n(n − 1)−
√

n(n − 1) < n(n − 2) + 1

m

−n ≤ −
√

n(n − 1) < −n + 1

m

n − 1 <
√

n(n − 1) ≤ n,

and the last expression is trivially true. Hence, using Proposition 2.1, L(N) =
⌊
N −

√
N
⌋

= n(n − 2).

Before proceeding, we are going to improve the lower bound found in Theorem 2.2:

Theorem 2.4. Let N > 3 be non-prime, and assume N = m · n, with m ≥ n. Define the set

An = {m0 · n | 1 ≤ m0 < m, m0 < N −m0n ≤ m}.

Then, L(N) ≥ max
(
An ∪ {m(n − 1)}

)
.

Proof. We already know from Theorem 2.2 that L(N) ≥ m(n − 1). Thus, it only remains to prove that
L(N) ≥ max An whenever such set is not empty (otherwise we are done). If An is not empty, then fix
m0 < m satisfying m0 < N − nm0 ≤ m. We are going to obtain the stated lower bound by finding x ∈ CN

with Z (x) ≥ nm0 and such that Z (x̂) ≥ nm0. To this end, we choose x to be of the following form

xq =

{
aj ∈ C, if q = j · n, for j ∈ {0, 1, ... , N − nm0 − 1},
0, otherwise.

That is, the nonzero components of x can only be indexed by multiples of n. The first thing to note is that
the condition N − nm0 ≤ m is imposed in order to ensure that we do not exceed the number of multiples

http://reportsascm.iec.cat4
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of n that are strictly less than N (there are exactly m, since N = m · n). Second, we also notice that,
by construction, Z (x) ≥ N − (N − nm0) = nm0. Now let ω = e2πi/N and, for simplicity, let us denote
k := N − nm0 and c := m0 − 1. Then we can build the following system of equations corresponding to
certain components of x̂ , according to (1):

x̂0

x̂1

x̂2
...

x̂c
x̂m

x̂m+1
...

x̂m+c
...
...

x̂(n−1)m+c



=



1 1 · · · 1

1 ωn · · · ωn(k−1)

1 ω2n · · · ω2n(k−1)

...
...

. . .
...

1 ωnc · · · ωcn(k−1)

1 ωnm · · · ωnm(k−1)

1 ωn(m+1) · · · ωn(m+1)(k−1)

...
...

. . .
...

1 ωn(m+c) · · · ωn(m+c)(k−1)

...
...

. . .
...

...
...

. . .
...

1 ωn((n−1)m+c) · · · ωn((n−1)m+c)(k−1)




x0

xn
...

xn(k−1)

 . (3)

Now we are going to prove that the homogeneous system associated to (3) has solutions besides the
trivial one, or in other words, that there exist nontrivial choices of x such that Z (x̂) ≥ nm0, so that
L(N) ≥ nm0. This will happen if the matrix of the system (3), say Ω, has rank strictly less than the
number of variables N − nm0. We observe that Ω is formed by n identical blocks Bq of size (c + 1)× k (or
equivalently, m0×(N−nm0)), each one of them consisting on the rows indexed by the values qm+b, where
q ∈ {0, 1, ... n− 1} is fixed, and b ∈ {0, 1, ... , c} (see (4) below). Then, the rank of Ω is less than or equal
to the rank of one Bq, reaching equality if the block has maximum rank, so that rank Ω ≤ c + 1 = m0.
Actually, this rank is maximum, since each one of the blocks consists on the rows of a Vandermonde matrix,
which is known to have maximum rank (cf. [5, Prop. 3.19]); indeed, if we denote β = e2πi/m = ωn, we
have, by the exponential periodicity,

Bq =


1 ωnqm · · · ωnqm(k−1)

1 ωn(qm+1) · · · ωn(qm+1)(k−1)

1 ωn(qm+2) · · · ωn(qm+2)(k−1)

...
...

. . .
...

1 ωn(qm+c) · · · ωn(qm+c)(k−1)

 =


1 1 · · · 1

1 β · · · β(k−1)

1 β2 · · · β2(k−1)

...
...

. . .
...

1 βc · · · βc(k−1)

 . (4)

So, we conclude that rank Ω = c + 1 = m0. Thus, the system (3) is compatible and indeterminate
whenever the number of columns of Ω (or the amount of indeterminates, which is the same number) is
strictly greater than its rank, which we are actually assuming with the condition m0 < N−nm0. Since this
procedure works for all 1 ≤ m0 < m satisfying m0 < N − nm0 ≤ m, we conclude that L(N) ≥ max An.

Example 2.5. In order to illustrate how Theorem 2.4 improves the result from Theorem 2.2, let us compute
a lower bound for L(39) using both results. Since the only nontrivial decomposition of 39 is 13 · 3,
Theorem 2.2 tells us that L(39) ≥ 13 · 2 = 26. On the other hand, the corresponding set to An in
Theorem 2.4 in this particular case is A3 = {3m0 : 1 ≤ m0 < m, m0 < 39− 3m0 ≤ 13}. It is easy to verify

5Reports@SCM 2 (2016), 1–10; DOI:10.2436/20.2002.02.6.
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that the only m0 satisfying 1 ≤ m0 < m and m0 < 39− 3m0 ≤ 13 is m0 = 9. Therefore, we conclude that
L(39) ≥ 3 · 9 = 27, which improves the lower bound obtained previously.

Notice that in the theorems we have presented so far, we have excluded the case of N being a prime
number. Our next result deals with the missing case; first of all we will need the following auxiliary theorem.

Theorem 2.6 (Chebotarev). Let ΩN =
(
ωj ,k

)
, as defined in (1). If N is prime, then any minor of ΩN is

nonzero.

There are several proofs for this theorem. We can find one similar to the original made by Chebotarev
in [6], and Dieudonné also gave an independent proof for this theorem, cf. [3]. So, if N is prime, whatever
submatrix we select from the N-dimensional Fourier matrix will have maximum rank. Using this fact we
can compute the exact value of L(N).

Proposition 2.7. Let N ≥ 3 be a prime number. Then, L(N) = bN/2c.

Proof. First, we prove that L(N) ≥ bN/2c. After that, using Chebotarev’s theorem, it is easy to see that
L(N) < bN/2c + 1. Let us define K = bN/2c, and let x = (x0, x1, ... , xK , 0, ... , 0) ∈ CN , with xj 6= 0 for
j = 0, ... , K . It is clear that Z (x) = N − (K + 1) = K , since N is odd. Now let us consider the following
homogeneous system of equations:

0
0
...
0

 =


1 1 · · · 1

1 e−2πi/N · · · e−2πiK/N

...
...

...
...

1 e2πi(K−1)/N ... e2πiK(K−1)/N




x0

x1
...

xK

 .

It is clearly compatible and indeterminate, since the matrix of the system is a Vandermonde matrix (we
note that it has rank K , while there are K +1 unknowns). Then, it has an infinite number of solutions, and
moreover, we note that each row j of the latter system corresponds by definition to the j-th component
of the vector x̂ . Therefore, there exist vectors x ∈ CN with Z (x) = N − K = K + 1 and Z (x̂) = K , and
hence, L(N) ≥ K .

Now suppose that there exists a vector x ∈ CN with Z (x) ≥ K + 1, Z (x̂) ≥ K + 1. Then, there exists
a homogeneous system of equations which is again compatible and indeterminate,

0
0
...
0

 =


e−2πis1r1/N e−2πis1r2/N · · · e−2πis1rK/N

e−2πis2r1/N e−2πis2r2/N · · · e−2πis2rK/N

...
...

...
...

e−2πisK+1r1/N e−2πisK+1r2/N · · · e−2πisK+1rK/N




xr1

xr2

...
xrK

 ,

but this happens if and only if the matrix of the system has rank strictly less than K . By Theorem 2.6, we
have that this rank is exactly K , which contradicts the existence of such x . This proves L(N) < K + 1,
and therefore, we conclude that L(N) = K .

3. The algorithm for finding L(N)

In this section we will carry the arguments used before one step further: we have been using homogeneous
systems of equations with submatrices of a Fourier matrix in order to place zeros arbitrarily in a vector x̂ ,

http://reportsascm.iec.cat6
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with the only restriction that the previous submatrix should have rank less than the number of unknowns,
i.e., the components of x that are different from zero (see, for example, the system (3)). Roughly speaking,
those matrices have many rows (one for each zero of x̂), and only a few columns. Therefore, the matrices
we are going to treat from now on will be of size M × N, with M > N.

Definition 3.1. For a matrix A ∈ CM×N , we say that A is rank-deficient if rank A < N, or equivalently, if
there exists x ∈ C\{0} such that Ax = 0.

Let us fix N ∈ N, and let x ∈ CN . Defining I to be the set of indexes where x̂ is nonzero, J
the set of indexes where x is nonzero, and N := {0, 1, ... , N − 1}, we would like to find submatrices
of the Fourier matrix ΩN such that ΩN

(
N\I , J

)
x|J = 0 and ΩN

(
N\I , J

)
is rank-deficient, where x|J is

the vector x restricted to the set of indexes J and ΩN

(
N\I , J

)
is the restriction of ΩN to the rows and

columns indexed by N\I and J, respectively. If we find one of those submatrices, then automatically
L(N) ≥ min{N − |I |, N − |J|}. However, computing the ranks of every m × n submatrix of ΩN is not an
option, since the number of ranks to compute in this case has order m!. To solve this issue we introduce
the following definition, that will lead to an easier reformulation of the problem.

Definition 3.2. For a matrix A ∈ CN×N and an integer d ∈ {1, ... , N}, we define the Hamming number
HA(d) as the minimal cardinality of all index sets I for which A

(
N\I , J

)
is rank-deficient, for a suitable J

with |J| ≤ d .

In other words, HA(d) = k means that we can find x ∈ CN\{0} such that A
(
N\I , J

)
x|J = 0 and

x|N\J = 0, where |J| ≤ d and |I | = k . Therefore, in terms of Fourier matrices, this would mean that we

can find x ∈ CN\{0} such that Z (x) ≥
∣∣N\J∣∣ ≥ N − d and Z (x̂) ≥ Z

(
ΩN

(
N\I , J

)
x|J
)

=
∣∣N\I ∣∣ = N − k,

which implies that

L(N) ≥ min
{

N − d , N − k
}

= min
{

N − d , N − HΩN
(d)
}

= N −max
{

d , HΩN
(d)
}

.

Remark 3.3. We have defined the Hamming numbers to depend on the complement of the set I instead
of the set itself. Doing so, we stay close to the formulation of the uncertainty principle (cf. [1, p. 351]).
Indeed, note that we can rewrite it as d · HΩN

(d) ≥ N, for all 1 ≤ d ≤ N.

In papers [1, 2], the numbers HΩN
(d) are investigated, concluding with an equality for any N and d ;

see Theorem 3.7 below. Those equalities will become crucial for us to compute the numbers L(N).

Theorem 3.4. Let N ∈ N and 1 ≤ k < N. Then, L(N) = k if and only if

N − HΩN
(N − k) ≥ k , (5)

and

N − HΩN
(N − (k + 1)) ≤ k . (6)

We would like to make some comments about the meaning of equations (5) and (6) before proving
the theorem. The first one means that we can find a vector z ∈ CN with at least k zero components such
that x̂ also has more than k zero components. On the other hand, the second inequality tells us that we
can find no vector z ∈ CN such that both z and ẑ have more than k zero components.
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Proof of Theorem 3.4. First of all, we observe that, by definition,

N − HΩN
(d) = max

{
Z (x̂) : x ∈ CN , H(x) ≤ d

}
= max

{
Z (x̂) : x ∈ CN , Z (x) ≥ N − d

}
. (7)

(⇒) Suppose that L(N) = k . Then, by (7), N −HΩN
(N − k) = max

{
Z (x̂) : x ∈ CN , Z (x) ≥ k

}
≥ k,

where the last inequality is our assumption. This proves (5). In order to prove (6), if x ∈ CN is such that
Z (x) ≥ k + 1 then, necessarily, Z (x̂) ≤ k (otherwise, L(N) = k would be false). Joining this fact along
with relation (7), we get N −HΩN

(N − (k + 1)) = max
{

Z (x̂) : x ∈ CN , Z (x) ≥ k + 1
}
≤ k , which proves

the result.

(⇐) We prove this implication by contradiction. Suppose that L(N) 6= k . Then, either (i) L(N) < k ,
or (ii) L(N) > k. In the case of (i), for any vector x ∈ CN such that Z (x) ≥ k , necessarily Z (x̂) < k
(otherwise, L(N) < k would be false). By (7), we deduce that

N − HΩN
(N − k) = max

{
Z (x̂) : x ∈ CN , Z (x) ≥ k

}
< k ,

i.e., inequality (5) is false. Finally, if (ii) holds true, then there exists N > k̃ > k such that L(N) = k̃.
Since HΩN

(d) is decreasing on the variable d , it follows that the expression N −HΩN
(N −M) is decreasing

on the variable M. Now, since k + 1 ≤ k̃ ,

N − HΩN
(N − (k + 1)) ≥ N − HΩN

(
N − k̃

)
= max

{
Z (x̂) : x ∈ CN , Z (x) ≥ k̃

}
≥ k̃ > k,

so that inequality (6) is false.

The following results we state are due to S. Delvaux and M. Van Barel; the proofs can be found in the
corresponding citations.

Theorem 3.5. [2, Thm. 9] Let pm be a power of a prime number p. Let d ∈ {1, 2, ... , pm} be such that
cpt ≤ d < (c +1)pt for certain c = 1, ... , p−1 and t = 0, ... , m−1. Then, HΩpm

(d) = (p−c +1)pm−t−1.

Theorem 3.6. [1, Cor. 23] For each divisor d of N, we have that HΩN
(d) = N/d, i.e., equality in the

uncertainty principle is reached.

Theorem 3.7. [1, Eq. (4)] Let 1 ≤ t < N. Then,

HΩN
(t) = min

{
(p − c + 1)

N

pd
: pd divides n, p prime, c ∈ {1, ... , p}, cd ≤ t

}
.

In fact, if we assume t < N, then the numbers p, c, d can be chosen to be such that c < p, cd ≤ t <
(c + 1)d, and p is the smallest prime divisor of n/d.

Finally, the algorithm to find L(N) is done in the following steps (always for N non-prime).

Algorithm 3.8. Let k be the lower bound of L(N) obtained through Theorem 2.4.

1. If k equals the higher bound
⌊
N −
√

N
⌋

(given by Proposition 2.1), then we trivially have L(N) = k,
so we do not need extra computations (as it occurs in Corollary 2.3).

2. If k <
⌊
N −

√
N
⌋
, then we check the veracity of (5) and (6), where the candidate to be L(N) is

k. If both inequalities are true, then by Theorem 3.4, we have L(N) = k. In order to compute the
hamming numbers appearing in these inequalities, we make use of Theorems 3.5, 3.6 and 3.7.
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3. If either (5) or (6) does not hold for k, then L(N) > k , so we proceed to check the veracity of (5)
and (6) with k + 1 in place of k .

4. We repeat the previous step until we find k̃ for which (5) and (6) hold. Then, L(N) = k̃.

Example 3.9. Consider N = 22n+1, with n ∈ N. It can be checked that 22n+1−2n+1 <
⌊
22n+1−

√
22n+1

⌋
for all n, so we will have to use the algorithm to compute L(N). So, let k = 2n+1(2n− 1) = 22n+1− 2n+1,
which is the lower bound of L(N) found in Theorem 2.4 (which, in this case, is the same given by
Theorem 2.2). Note that we are only considering odd powers of 2, since any even power is covered by the
case N = m2. Now we check that inequality (5) holds:

N − HΩN

(
N −

(
22n+1 − 2n+1

))
= 22n+1 − HΩN

(
2n+1

)
.

By Theorem 3.6, we have that HΩN

(
2n+1

)
= 2n. Therefore, 22n+1 − 2n ≥ 22n+1 − 2n+1 = k . Now we

prove inequality (6). Note that N −
(
22n+1 − 2n+1 + 1

)
= 2n+1 − 1. Using Theorem 3.5 to compute

HFN

(
2n+1 − 1

)
, we observe that t = n and c = 1. Hence,

HΩN

(
2n+1 − 1

)
= (2− 1 + 1) · 22n+1−n−1 = 2 · 2n = 2n+1.

Finally, since N−HΩN

(
2n+1−1

)
= N−2n+1 = 22n+1−2n+1 = k, we obtain that L

(
22n+1

)
= 22n+1−2n+1.

In this example we did not need to go further than step 1 of the algorithm, since the lower bound
we started with was the precise number we were looking for. Now, we have the following example that
will force us to carry the algorithm one step further, and will as well illustrate how Theorem 2.4 improves
Theorem 2.2.

Example 3.10. Let N = 39 = 13 · 3. We have already seen in Example 2.5 that L(39) ≥ 9 · 3 = 27. Since⌊
39 −

√
39
⌋

= 32 > 27, we have to use the algorithm in order to find L(39), i.e., we check whether the
inequalities (5) and (6) hold with k = 27. As we are going to see, (6), which in this case reads as

39− HΩ39(11) ≥ 27

does not hold. In order to prove it, we use Theorem 3.7. In this case, we note that the choice of p, c , and
d must be the following:

p = 13, c = 3, d = 3. (8)

Then, HΩ39(11) = (13− 3 + 1) = 11, so that 39−HΩ39(11) = 28 � 27. Now we have to apply the second
step of the algorithm: let k = 28. We can use the previous computations to see that

39− HΩ39(39− 28) = 39− HΩ39(11) = 28,

so inequality (5) holds. Further, we have to compute HΩ39(39 − 29) = HΩ39(10). Again, we apply
Theorem 3.7 with the choice of p, c , and d as in (8), which is suitable, since 3 · 3 ≤ 10 < 3 · 4. Since the
parameters involved in Theorem 3.7 did not change, we have that HΩ39(10) = HΩ39(11) = 11, and

39− HΩ39(10) = 39− 11 = 28,

so that inequality (6) holds. Therefore, L(39) = 28.
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0 1 2 3 4 5 6 7 8 9

0 0 0 1 2 2 3 3 4 6

10 6 5 8 6 8 10 12 8 12 9

20 15 15 14 11 18 20 16 21 21 14

30 24 15 24 24 22 28 30 18 24 28

40 32 20 35 21 34 36 30 23 40 42

50 40 37 40 26 45 45 48 42 38 29

60 50 30 40 54 56 53 55 33 53 51

70 60 35 63 36 48 65 60 66 66 39

80 70 72 54 41 72 70 56 64 77 44

90 80 78 72 69 62 78 84 48 84 88

Table 1: Values of L(N), where at each cell, N is given by the sum of the top value of its column and the
leftmost value of its row. This table can be easily obtained by coding the algorithm 3.8 in any numerical
programming language.

To conclude, we present the table 1 with the values of L(N) for N = 1, ... , 99. Observe that we trivially
have L(1) = L(2) = 0. We observe that for the first 10 natural numbers, L(N) seems to be monotone, but
L(11) = 5 < L(10). This is because, as we have already mentioned, L(N) depends strongly on its possible
decompositions as a product of two numbers. Since 11 is prime, it cannot have such a decomposition
besides the trivial one, while 10 = 5 · 2 does and, therefore, it has a “better” behavior in terms of getting
L(N) as close as possible to N−

√
N. Finally, we remark that the lower bound for the numbers L(N) given

in Theorem 2.4 is often optimal (when N is not prime) for the first 99 natural numbers: indeed, this lower
bound fails to be equal to L(N) only for the following values of N:

27, 39, 44, 51, 65, 68, 75, 87, 95.
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otarëv and his density theorem”, Math. Intelli-
gencer 18 (1996), 26–37.

http://reportsascm.iec.cat10

http://reportsascm.iec.cat


AN ELECTRONIC JOURNAL OF THE

SOCIETAT CATALANA DE MATEMÀTIQUES
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assignades a cada distribució que es basa en aplicar successivament el mètode
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Improvements to the Erik+2 method

1. Introduction

Phylogenetics is a classical branch of science whose main aim is to determine evolutionary relationships
between species. We typically have DNA sequences from genes of the different species we are studying and
the classical approach would be to perform some kind of statistical analysis to determine the tree that fits
the best to our data. However, in recent years, the use of tools from algebraic geometry have let to obtain
a great progress in this field: we could talk about a new branch, phylogenetic algebraic geometry, that
would study algebraic varieties representing statistical models of evolution, mixing that way mathematics,
statistics, biology and computation. We take as our starting point the approach of Nicholas Eriksson and
others, that uses the computation of the singular value decomposition of a matrix to study the distance to
a particular algebraic variety. In recent years, Marta Casanellas and Jesús Fernández-Sánchez developed an
improved version, Erik+2, that leaded to better results in the case of four species. Now, we try to extend
their idea to the case of more species (here we work with the case of 12), having the necessity of doing
some ponderations during the process concerning the size of the submatrices to obtain a result that, and
even though our result is not optimal, provides some good approaches.

2. Background

The evolution of species is usually modeled in a phylogenetic tree T . The leaves of the tree represent current
species and the root the common ancestor. The aim of phylogenetics is to determine the phylogenetic tree
of a set of species from the DNA sequences of current species. Due to its structure, we can deal with DNA
sequences as if they were a sequence of nucleotides (A, C, G, T). For this reason, we need a statistical model
for the substitutions of nucleotides to face our problem. We will work under the following assumptions:

(i) the trees are binary (which means that two branches come out of the root, if it exists, and that they
are divided into another two branches in each node);

(ii) the processes in each branch do only depend on the common father node;

(iii) mutations of the DNA chain occur randomly;

(iv) each position of the DNA sequence evolves independently and under the same mutation probabilities;
this means it is enough to model one position of the chain.

Following these assumptions we can think the nucleotide mutation process as a Markov process by
assigning to each edge e a transition matrix

Se =


P(A | A, e) P(C | A, e) P(G | A, e) P(T | A, e)
P(A | C, e) P(C | C, e) P(G | C, e) P(T | C, e)
P(A | G, e) P(C | G, e) P(G | G, e) P(T | G, e)
P(A | T, e) P(C | T, e) P(G | T, e) P(T | T, e)

 ,

where P(I | J, e) is the probability of the nucleotide in the father node J becoming I after the edge e. These
entries are unknown and along with the distribution in the root π = (πA,πC,πG,πT) are the parameters of
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Figure 1: A example of an unrooted 4-leaf phylogenetic tree.

our model. By imposing conditions on the matrix Se , one obtains different models. We deal with the most
general Markov model; see [4].

We define now the random variables Xi as the state of the leaf i for i ∈ {1, ... , n} so that Xi takes values
in {A, C, G, T} = K, where n is the number of leaves of the tree. Now let px1x2···xn = P(X1 = x1, ... , Xn = xn)
be the joint distribution at the leaves of the tree. Those probabilities can be calculated using only the
entries of the transition matrices.

We are now ready to state the main definition and the main theorem we will need to understand Erik+2
method.

Definition 2.1. Let A|B be a partition of the leaves (that is, if L(T ) is the set of leaves of the rooted tree
T then L(T ) = A ∪ B and A ∩ B = ∅), where we also assume that A and B are ordered sets. Then we
define the flattening matrix flatA|B of a joint distribution vector p associated to the partition A|B as the

4|A| × 4|B| matrix

flatA|B(p) =


pAA···AA pAA···AC pAA···AG · · · pAA···TT
pAC···AA pAC···AC pAC···AG · · · pAC···TT
pAG···AA pAG···AC pAG···AG · · · pAG···TT

...
...

...
. . .

...
pTT···AA pTT···AC pTT···AG · · · pTT···TT

 .

That is, each column of the flattening matrix corresponds to a state of the leaves in B and each row to a
state of the leaves in A. We will call such a partition an edge split if we can remove an edge such that all
the leaves in A are in the same connected component and all the leaves in B are in the other one, and we
will refer as the size of the partition to the pair (|A|, |B|) (though we will usually write it as |A| × |B|).

For instance, in the previous example 12|34 is an edge split partition, while 13|24 is not. Now we are
ready to state the following result.

Theorem 2.2 ([1, 2]). Let A|B be a partition of the set of leaves of the tree T and let p be the joint distri-
bution at the leaves of T for certain parameters. If that partition is an edge split, then rank flatA|B(p) ≤ 4,
whereas if it is not an edge split partition and the parameters are general enough and |A|, |B| > 1, then
rank flatA|B(p) > 4.

For the case with n = 4 species at the leaves if the parameters are “general enough”, one can show
that the rank of the flattening matrix for partitions which are not an edge split is maximum (i.e., 16) but,
since we will be dealing with cases with n = 12, we cannot assume this as true (cf., [1]).
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2.1 The Erik+2 method

We start off with a set of ordered nucleotide sequences (one for each leaf in our tree, as they are the
observed DNA chains of current species) which we will assume that have no gaps and have all the same
length. We think of this set of nucleotide sequences as an alignment, that is, nucleotides at the same
position of the different sequences are supposed to have evolved from the same nucleotide of the common
ancestor.

From this experimental data we can calculate the relative frequencies p̃x1x2···xn , which we will use as
estimators for the true probabilities px1x2···xn (in fact it can be shown that those are the maximum likelihood
estimators for the true probabilities, see [3]). Given a partition of the leaves A|B, we can build the estimated

flattening matrix fl̃atA|B just like we did above, but this time using the relative frequencies instead of the
true probabilities. We aim to determine the right topology of the tree (i.e., to determine which species
is at each leaf) by studying which partitions of the leaves are an edge split according to the experimental
data and which are not.

By the theorem we stated above, if that matrix was exactly the flattening matrix we should be able to
distinguish between edge splits and the other ones because edge splits would have exactly rank 4 or less
and the other ones would not. This could be done easily by checking whether all 5 × 5 minors vanish or
not, but since we only have the estimated matrices we have to develop a method to decide which one is
“closer” to rank 4 matrices and to do so we will take the distance induced by the Frobenius norm.

Lemma 2.3. If M is an m × n matrix and {σi} are its singular values (ordered from big to small), the
Frobenius distance of M to V (the set of rank 4 or lower matrices) in the Frobenius norm is

d(M,V) =

min{m,n}∑
i=5

σ2i .

The ErikSVD method (see [1]) uses this fact to give a score to each flattening matrix. Indeed, it works
as follows: given an alignment and a partition A|B, it computes the estimated flattening matrix and then

it obtains the singular value decomposition of the matrix and computes the distance d(fl̃atA|B ,V) which is
the score assigned to the partition. Hence the partition which is estimated to be an edge split is the one
having the lowest score.

The Erik+2 method (see [3]) slightly modifies the previous procedure by taking into account that the
rank of the flattening matrix could be affected by the presence of long-branch attraction situations. The
solution given by the Erik+2 method is to normalize first rows and then columns so each one sums up to
1. Scores obtained after normalizing by both rows and columns are taken into account to compute the
final score.

One has to take into account that if we are dealing with a case with n = 4 then the flattening matrices
for 2× 2 partitions will have dimension 16× 16. But in our case we used the algorithm to treat cases with
12 species, which leads to flattening matrices with dimensions 42× 410 for 2× 10 (actually the dimensions
of the matrix we were dealing with computationally were about 16× 60000 since we were only taking into
account nonempty rows and columns) and 45 × 47 for 5× 7 partitions. This explains why alignments with
size 100000 work fine with 4 species but often are not enough to fill bigger flattening matrices so as to
give a closer approach to the theoretical situation.

Since the number of singular values depends on the dimensions of the matrix and these dimensions
depend on the cardinal of the subsets that form the partition, another interesting point is to ensure that
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we can compare scores obtained from partitions whose subsets have different cardinals (and hence their
flattening matrices have different dimensions).

3. Our proposed modifications

In this section we describe some of the most successful modifications out of the ones we tried. We start
off with the observation that for the 2 × 10 sized partitions the flattening matrices have lots of columns
which contain a single element due to the lack of data and that this fact can easily alter the rank of the
matrix. Since the theoretical model stated that we should be dealing with matrices of rank approximately
4, we conjectured that there should be an important amount of data in a few rows and columns.

First of all we looked at how data should be distributed if the alignment was completely random (in
this paper we will always assume that a random alignment is an alignment such that the distribution of its
columns is uniform) to compare it to the actual flattening matrices. The following lemmas will allow us to
make those estimations.

Lemma 3.1. In a randomly generated alignment of length n, the expected number of nonempty columns
of a flattening matrix of c columns is

an = −c

(
c − 1

c

)n

+ c .

Proof. We can easily build a recurrence by noticing that, when we have an alignment of length i , then
ai+1 is simply the probability of the new datum being on an already occupied column times the current
number of occupied columns plus the probability of it being on an empty column times the current number
of occupied columns plus one. Noticing that the number of currently occupied columns is ai (so ai+1 can
only take the values ai and ai + 1 each one with its probability) we can write

ai+1 = P(new datum is in occupied column) · ai + P(new datum not in occupied column) · (ai + 1) =

=
c − ai

c
(ai + 1) +

ai
c

ai .

Simplifying, one obtains cai+1 − (c − 1)ai = c . Then, we just need to resolve the recurrence. Putting it
in an homogeneous form we obtain cai+2 − (2c − 1)ai+1 + (c − 1)ai = 0 so, the characteristic polynomial
has roots 1 and (c − 1)/c and we get a solution of the form

an = α

(
c − 1

c

)n

+ β.

By setting initial conditions one obtains the result.

Lemma 3.2. In a randomly generated alignment of length n, the expected number of columns with a
single matrix of a flattening matrix of c columns is

bn = an

(
an − 1

an

)n−an
,

where an is defined as in the previous lemma.
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Proof. We have that an columns are occupied so we can focus in the case where each one of them has a
single entry and that we have n − an data left to distribute. Since having a single entry is now equivalent
to not getting any of those remaining data, we can apply the previous lemma with n = n− an and c = an,
so the number of occupied columns is now

X = −an

(
an − 1

an

)n−an
+ an,

and the number of not occupied (and hence with a single entry) columns an−X is the one stated above.

Assuming alignments of size 105 as the ones we had, we obtained, for instance, that for the 2 × 10
partition there would be on average 95380 nonempty columns, where 90869 of them have only one entry.
The actual matrices have about 60000 nonempty columns, 40000 of them having a single entry, hence
dispersion is lower than in the random model but not much lower. For 5× 7 partitions, we observed that
random matrices have entries in almost all columns (we computed an average of 16347 nonempty columns
out of 47 = 16384 possible, and we expected that just 98 columns had one entry). In this case we observed
that, on average, we had 9000 nonempty columns so dispersion was also lower than in the random case.
This data is obtained from the following lemmas and completed in table 1.

Partition Number of columns Expected nonempty Expected single entry

2 vs 10 410 = 1048576 95380 90869
3 vs 9 49 = 262144 83137 67874
4 vs 8 48 = 65536 51287 19837
5 vs 7 47 = 16384 16347 98

Table 1: Expected number of nonempty columns and columns with a single entry assuming alignments of
length n = 105.

We can also use recurrences to estimate the number of entries in the most populated rows. To normalize,
we will need to look at the number of entries at the most populated half according to our proposed method
that will be explained below (since the most populated half has a greater weight in the final score). Taking
into account that half, we will look at how many entries we have in the most populated sub-half, and so
on (this works since the number of rows is always a power of 2). We will treat the problem of determining
the number of entries in the most populated half as the problem of looking for the expected cardinality of
the most populated half (tails or heads) when we toss n times a coin (this is equivalent to our problem
since the data distribution is uniform). Let cn be that number. Clearly c1 = 1 and cn = cn−1 + 1/2 if n is
even (since the new coin will result in the result which is currently most frequent with probability 1/2), and
if n is odd we see that cn is 1/2 plus the previous number of coins in the most populated half, as before,
but we have to take into account the existence of draws by adding an extra term that takes care of this
probability, resulting in

cn = cn−1 +
1

2
+

1

2

( n−1
(n−1)/2

)
2n−1

,

for odd n. By Stirling’s approximation we get

cn ≈ cn−1 +
1

2
+

1√
2π(n − 1)
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so, for n big enough, by adding up both results we get

cn ≈
n + 1

2
+

1

2
√
π

(n−1)/2∑
i=1

1√
i

 .

We also looked with detail to some cases and found out the following patterns for flattening matrices
coming from an edge split. They usually (respect to flattening matrices not coming from a partition which
is an edge split) have a lower amount of nonempty rows and columns, have less rows and columns with
only 1 entry, and have more entries in the most populated rows.

This led us to think that it would be convenient to reorder rows and columns according to their number
of entries, in order to have the most populated (and hence most significant) rows and columns in the first
place. Then we consider the sub-matrices obtained by taking the m rows and the first k columns, where
m is the number of rows of the matrix and k is a parameter of the method (we used k = 1000). We
apply the Erik+2 method to those sub-matrices and then we extend the sub-matrix with k more columns,
compute the score again and so on, and finally we add up all the scores. In order to compare the scores
between partitions of different size, it is convenient to divide the score by the number of total SVDs done.
However, when dealing with partitions of the same size, this does not help since it would decrease the score
for wrong matrices which usually have more nonempty columns.

We also considered to do an analogous procedure for both rows and columns, i.e., considering sub-
matrices of size k1 × k2, and then increase both k1 and k2 but, since we are usually dealing with matrices
which have m� n, we did not see a significant improvement of the results. Due to this fact we also need
to multiply by m the score obtained by normalizing the columns, and by n the score obtained by normalizing
the rows, in order to have the same order of magnitude.

Since we are adding up scores of matrices with different dimensions, the next step is to give estimates
for the value of those scores so we can normalize. If we have an m × n matrix and we normalize the rows
so as the elements of each row sum up to 1, we get√∑∑

a2ij
mn

≥
∑∑

aij
mn

=
m

mn
=

1

n

since each row adds up to one (we assume that in each row there is at least one entry since the method
does only take into account nonempty rows). We obtain√∑∑

a2ij ≥
√

m

n
=⇒ n

√∑∑
a2ij ≥

√
mn

and, by symmetry, we obtain the same result when we normalize columns and multiply by m. To get an
upper bound notice that, since (

∑
bi )

2 = 1 (where the bi are elements of a row or a column which has

been normalized), we obtain
∑

b2
i ≤ 1. By proceeding this way, we get

√∑∑
a2ij ≤

√
m and, multiplying

by n and arguing analogously for rows and columns, we finally get that

n · rownorm + m · colnorm ∈ [2
√

mn, (
√

m +
√

n)
√

mn].

The experimental results tell us that neither of those bounds is sharp enough.
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We try another approximation: assuming êi = e/m where e is the total number of entries of the matrix
and êi is an estimator for the number of entries in a row then, for the ML estimator properties (we can

view that estimator as an estimator for a binomial distribution), ˆ1/ei = m/e. This way we see that there
is approximately one datum for each one of the ei entries and we have√∑∑

a2ij =

√∑ 1

e2i
ei =

√∑ 1

ei
∼
√∑ m

e
=

√
m2

e
=

m√
e

.

Hence, after multiplying by n, we get a value of mn/
√

e (the value obtained for the other normalization is
the same, by symmetry). These are in good agreement with this value so it results a nice normalization.
This is the expected value for a random matrix which has only ones at e � mn, but not a bound (as the
matrix gets further away from the random model, the value gets also more different from this one).

This normalization is interesting because it makes the sub-scores of the sub-matrices have similar values
as we increase the number of rows of the sub-matrices instead of having an increasing sequence as we prove
in the following lemma.

Lemma 3.3. Consider the sequence of values (xn) corresponding to the Frobenius norm of the matrix
obtained by taking into account the first n columns, and then normalizing by rows and columns. For n
sufficiently big, (xn) becomes increasing.

Proof. If we normalize by columns, the result follows trivially since the other columns remain unchanged
and we add a new positive term to the computation of the norm. If we normalize by rows, it suffices to
show that, if the matrix has s data in the row and the new column adds d data, then√∑

a2i
s2
≤

√∑
a2i + d

(s + d)2

which is equivalent to
∑

a2i ≤ ds2/(2sd + d2). By using the inequality between the arithmetic mean and
the quadratic mean, we get ∑

a2i ≤
∑

ai
n

=
s

n

so we need
s

n
≤ ds2

2ds + s2
⇐⇒ s ≥ d

n − 2
,

which is true for n big enough (and in general for our matrices n will almost always be big enough).

After this discussion, since dispersion is high, we assume that our data will be closer to the random
model and hence the score we assign to a m × n sub-matrix is the following (the overall score is obtained
after adding up all the scores given to sub-matrices):

score(M) =
n · rowscore + m · colscore

mn/
√

e
. (1)

After computing the overall score, we can divide by either the number of SVDs done (so as to compare
our score to scores coming from partitions with different size) or by the expected number of SVDs for that
size of the partition, in order to keep a penalty to flattening matrices which require a higher number of
SVDs, because they have a higher number of columns.
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4. Performance tests for several methods

To test the performance of our method and to compare it to the original Erik+2 method, we considered a
set of 100 data files corresponding to trees with 12 leaves with the same topology but with random branch
lengths. For every data set, we obtained the scores for 9 partitions, 3 of size 2× 10, 3 of size 3× 9 and 3
of size 5× 7, where one partition of each size was an edge split and the rest were not.

The following tables 2 and 3 contain the information of the performance (success1 and scores assigned
to both edge splits and other partitions) for the methods corresponding to the following scores: sc1 is
the number of nonempty rows of the flattening matrix, sc2 is the number of nonempty columns of the
flattening matrices, sc3 is the original Erik+2 score, sc4 the Erik+2 score using the mn/

√
e normalization,

sc5 the score given by the variant of our method2 without dividing by the number of SVDs computed, sc6
the score given by our method taking the arithmetic mean of the scores obtained for each sub-matrix, and
sc7 the score of our method taking a pondered mean of the sub-scores.

Partition sc1 sc2 sc3 sc4 sc5 sc6 sc7
2 vs 10 100 64 33 40 70 65 67
3 vs 9 100 50 39 31 42 35 36
5 vs 7 97 76 58 21 47 24 26

Table 2: Percentage of success of the different methods (where each method is represented by its score).

Partition sc1 sc2 sc3 sc4 sc5 sc6 sc7
2 vs 10 (ES) 16 57418 3209 181 9972 176 177
2 vs 10 (NES) 16 59347 3206 181 10502 179 183

3 vs 9 (ES) 62 38453 13926 296 10929 291 291
3 vs 9 (NES) 64 39422 14396 293 11134 288 288

5 vs 7 (ES) 890 8745 75489 589 4530 620 677
5 vs 7 (NES) 954 9816 87601 560 4814 584 638

Table 3: Average of the score given to edge splits (rows labelled with (ES)) and to partitions which are
not edge splits (labelled with (NES)) by each method.

5. Conclusions

We can see that our method (score 5) works significantly better than the original Erik+2 method for 2 vs
10 partitions, since it recognizes the edge split of the three partitions 70 out of 100 times, and the original
method worked fine only 33% of the time. This could be explained by the fact that the Erik+2 method

1We consider a test successful if the score the method assigned to the edge split is lower or equal than the score it assigned
to two partitions which were not an edge split of that size. Notice that with our data set we could make 100 test for each size.

2We will refer as “our method” to the method that implements the modifications proposed above: reorder rows and
columns, consider sub-matrices formed by the first ik columns in the i-th iteration, compute the score for each sub-matrix
using (1) and add up all the scores, resulting in score 5. Scores 6 and 7 slightly modify this method by taking the mean of the
sub-scores.
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computes a single SVD where only 16 singular values are obtained (notice that the Erik+2 method is more
accurate as the partition is more balanced), and that the dispersion present in flattening matrices coming
from unbalanced partitions fits nicely with the assumptions we made to obtain the mn/

√
e normalization.

For the 3 vs 9 case, our method turns out to be slightly better but not significantly; neither the original
method nor ours provided a satisfactory result, so we think new ideas should be introduced to deal with
this problem. In the 5 vs 7 case the most effective score turns out to be the original Erik+2 method, but we
should notice that the percentage of success in taking the score as simply the number of columns is really
high and the averaged difference of columns between edge splits and the other partitions is percentage-wise
the most significant. The score sc1 is not reliable for unbalanced partitions as the number of rows of
the flattening matrices of unbalanced partitions is small and almost never there is an empty row (we can
see in table 3 that, for 2 vs 10 and 3 vs 9 partitions, that averages for both edge splits and the rest of
partitions are really close to 16 and 64, the number of rows of the flattening matrices). Nevertheless, when
we consider balanced partitions (e.g., 5 vs 7) and hence the number of rows of the flattening matrices is
higher, we can take it into account since for those cases the difference of scores between edge splits and
the other partitions is noticeable and it has a huge percentage of success.

We can also see that, while we have reduced the relative difference between scores when averaging
(although by doing this we are decreasing the percentage of success), those scores are not yet comparable.
A noticeable fact is that for the method that works better (without averaging) scores obtained for the first
two sizes are really close, but for the 5 vs 7 it reduces to less than one half (this is due to the fact that
we make much less SVDs, as one can see looking at the averaged score), while for the original Erik+2 the
score shows a steady increasing trend when the partition gets more balanced. We should also note that
we worked estimations for the norm of the matrix and not for the distance to rank 4 flattening itself (they
differ in the square of the first 4 singular values) and this could affect the success of our method in some
cases.
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superf́ıcies de Riemann.

Abstract (ENG)
In this article we give a simple proof of the existence of proper harmonic maps from

any open Riemann surface into the complex plane C ≡ R2. Our main tool will be

the Approximation Theory by holomorphic functions on Riemann surfaces.

Keywords: Harmonic map, proper
map, Riemann surface, Runge theo-
rem.
MSC (2010): Primary 30F15.
Received: March 3th, 2015.
Accepted: December 28th, 2015.

Acknowledgement
The author is partially supported by a

“Beca Iniciación a la Investigación de la

Universidad de Granada”.

21http://reportsascm.iec.cat Reports@SCM 2 (2016), 21–32; DOI:10.2436/20.2002.02.8.

A geometric application of Runge’s
theorem

http://reportsascm.iec.cat


A Geometric Application of Runge’s Theorem

1. Introduction

The Runge and Mergelyan Theorems are the main results of Approximation Theory in one complex variable.
The former, proved in 1885, asserts that every holomorphic function defined on an open neighbourhood
of a compact set K of C can be uniformly approximated on K by entire functions, provided that the
complement of K in C has no relatively compact connected components, see [11]. In the same line,
Mergelyan [10] proved in 1951 that a continuous function K → C, which is holomorphic on K ◦, can be
uniformly approximated on K by holomorphic functions on an open neighbourhood of K . Later, Bishop [5]
extended these results to the context of open Riemann surfaces.

Theorem 1.1 (Runge–Mergelyan Theorem). Let R be an open Riemann surface and let K ⊂ R be
a compact subset such that R \ K has no relatively compact connected components in R. For any
continuous function f : K → C which is holomorphic on K ◦ and any ε > 0, there exists a holomorphic
function F : R → C such that ‖F (p)− f (p)‖ < ε for all p ∈ K .

The Runge and Mergelyan Theorems are useful in many different areas, e.g., complex analysis or surface
theory. In particular, these tools have been exploited in the construction of minimal surfaces in the three-
dimensional euclidean space R3. Recall that this class of surfaces is closely related to complex analysis
through the Enneper–Weierstrass representation.

A fundamental problem in minimal surface theory is to understand how the conformal type (i.e., the
type of the underlying Riemann surface) influences the global geometry of minimal surfaces. From an
analytical point of view, an open Riemann surface is hyperbolic if and only if it admits negative non-
constant subharmonic functions, and it is parabolic otherwise. This classification can also be explained in
terms of Brownian motion of a particle over the surface; parabolicity is equivalent to the property that the
Brownian motion visits any open set at arbitrarily large moments of time with probability 1. See the book
of Grigor’yan [8] for more details.

Up to biholomorphisms, the only simply connected open Riemann surfaces are the unit disk D (of
hyperbolic type) and the complex plane C (of parabolic type). Heinz [9] proved in 1952 that there do
not exist harmonic diffeomorphisms between D and C with the euclidean metrics, extending the classical
theorems by Riemann and Liouville. As a generalization of this result, Schoen–Yau [12, p. 18] conjectured
in 1985 the nonexistence of proper harmonic maps D→ R2. Schoen and Yau related this conjecture with
the problem of existence of minimal surfaces in R3 having hyperbolic conformal type and proper projection
into R2; recall that the coordinate functions of a conformal minimal immersion from a Riemann surface
into R3 are harmonic. In 2001, Forstnerič–Globevnik [7, Theorem 1.4] disproved Schoen–Yau’s conjecture.
In 2011, Alarcón–Gálvez [1] extended this result to surfaces with finite topology. Although the Schoen–Yau
conjecture was solved, its version for minimal surfaces was still open. This problem was settled in the most
general and optimum form by Alarcón–López [2, 3], who proved the following result.

Theorem 1.2 (Alarcón–López [2, 3]). Every open Riemann surface R admits a conformal minimal immer-
sion X = (X1, X2, X3) : R → R3, such that (X1, X2) : R → R2 is a proper map.

The proof of Alarcón–López is based on a Runge–Mergelyan type theorem for minimal surfaces [2],
a powerful tool in the construction of minimal surfaces which has found many applications. Since the
coordinate functions of a conformal minimal immersion are harmonic, the full answer to the Schoen–Yau
conjecture is immediately derived from Theorem 1.2:
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Theorem 1.3. Every open Riemann surface R admits a proper harmonic map R → R2.

An alternative proof of this result was given later by Andrist–Wold [4].

The goal of this article is to give a simple proof of Theorem 1.3. Our proof combines the ideas
of Alarcón–López with the classical Runge–Mergleyan Theorem 1.1. Roughly speaking, given an open
Riemann surface R, we will construct an expansive sequence of compact sets {Mn}n∈N on R and harmonic
maps {hn : Mn → R2}n∈N satisfying hn+1 ≈ hn on Mn, n ≥ 1, and {hn(∂Mn)}n∈N → ∞. We will ensure
that the limit map h := limn→∞ hn exists and is proper and harmonic.

2. Background

We denote by ‖ · ‖ the euclidean norm in Rn. Given a compact topological space K and a continuous
function f : K → Rn, we denote by ‖f ‖K = maxa∈K ‖f (a)‖ the maximum norm of f on K . Given ζ ∈ C
we denote by <(ζ) and =(ζ) its real and imaginary parts, respectively.

Let S be a topological surface. We denote by ∂S the topological boundary of S ; recall that ∂S is a
1-dimensional topological manifold. Hence, we say that the surface S is open if it is not compact and
∂S = ∅. Given a subset A ⊂ S , we denote by A and A◦ the closure and the interior of A in S , respectively.
Given subsets A, B ⊂ S , we write A b B when A ⊂ B◦. A subset A ⊂ S \ ∂S is called a bordered region
in S if A is a compact topological surface with the topology induced by S and ∂A 6= ∅; in particular, ∂A
consists of a finite family of pairwise disjoint Jordan curves. If S is a differentiable surface, a bordered
region A on S is called differentiable if ∂A is differentiable.

Let X and Y be two topological spaces. A map f : X → Y is called proper if f −1(C ) is a compact
subset of X for any compact subset C ⊂ Y . If f is continuous and Y is Hausdorff, then f is proper if and
only if for any divergent sequence {xn}n∈N in X (i.e., leaving any compact set), the sequence {f (xn)}n∈N
is divergent in Y .

Recall that a Riemann surface (without boundary) R is a 1-dimensional complex manifold and every
open set of a Riemann surface is canonically a Riemann surface by restriction of charts.

From now on, R will denote an open Riemann surface.

A function φ : R → C is called holomorphic if the composition with any chart of R is a holomorphic
function; equivalently, if for any point p ∈ R there exists a chart around p ∈ R such that the composition
with φ is again a holomorphic function.

Definition 2.1. Let R be an open Riemann surface. A function h : R → R is called harmonic if its
composition with any chart is harmonic; equivalently, if for any point p ∈ R there exists a chart around
p ∈ R such that the composition is harmonic. A map (h1, ... , hn) : R → Rn, n ∈ N, is called harmonic if
hj : R → R is harmonic for all j = 1, ... , n.

Recall that, since the changes of charts in a Riemann surface are biholomorphisms and the composition
of a harmonic function with a biholomorphism is again harmonic, the notion of harmonicity is well-defined
on a Riemann surface. Furthermore, a function h : R → R is harmonic if and only if for any simply
connected open set D ⊂ R there exists a holomorphic function φ : D → C such that h|D = <(φ).

A compact subset K ⊂ R is called Runge if R \ K has no relatively compact connected components
in R.
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Theorem 2.2 (Runge–Mergelyan). Let R be an open Riemann surface and let K ⊂ R be a compact
Runge subset. Given a continuous function f : K → C which is holomorphic on K ◦ and given ε > 0, there
exists a holomorphic function F : R → C such that ‖F − f ‖K < ε.

3. Proof of Theorem 1.3

Theorem 1.3 is a consequence of the following more general result, concerning the existence of holomorphic
functions into C2.

Theorem 3.1. Let R be an open Riemann surface. Then there exists a holomorphic function H =
(H1, H2) : R → C2 such that <(H) = (<(H1),<(H2)) : R → R2 is proper.

This is the main result of the paper; since <(H) is harmonic, Theorem 1.3 follows directly. Before
going into the proof of Theorem 3.1 we need some preparations.

Lemma 3.2. For any open Riemann surface R there exists a sequence of bordered regions {Mn}n∈N in R
such that

(i) Mn is a differentiable bordered region and it is Runge and connected for all n ∈ N;

(ii) {Mn}n∈N is an exhaustive sequence, that is, Mn b Mn+1 ∀n ∈ N and
⋃

n∈N Mn = R;

(iii) χ(Mn+1 \M◦n) ∈ {−1, 0} ∀n ∈ N, where χ(M) denotes the Euler characteristic of the region M.

Proof. Let {Un}n∈N be a exhaustive sequence of R by connected (differentiable) bordered regions; such
sequences trivially exists. Let us first show that we can find a new exhaustion {Vn}n∈N of R by connected
Runge regions. Indeed, if U1 is Runge we define V1 = U1; otherwise, we define V1 as the union of U1 with
all the bounded connected components of R \ U1. Therefore V1 is Runge and connected. Inductively, for
any n ≥ 2 let Vn be the union of Vn−1, Un and all the bounded connected components of R \ Un. This
implies that Vn is Runge and connected. As Un ⊂ Vn and Vn b Vn+1 ∀n ∈ N, the sequence {Vn}n∈N is
an exhaustion of R by Runge connected bordered regions.

The properties (i) and (ii) of the lemma are formally satisfied by {Vn}n∈N. The second step of the
proof consists of adding convenient terms to the exhaustion {Vn}n∈N in order to guarantee property (iii).

We consider now two consecutive regions Vm and Vm+1, m ∈ N. Set A := Vm, B := Vm+1 and recall
that A b B. Let n := −χ(B \ A◦).

Claim 3.3. There exist compact sets N1, ... , Nn−1 in R such that

• A b N1 b N2 b · · · b Nn−1 b B;

• χ(N1 \ A◦), χ(Ni \ N◦i−1) and χ(B \ N◦n−1) take values in {−1, 0}, for i = 2, ... , n − 1.

Proof. We proceed by induction on n. If n ∈ {−1, 0} there is nothing to prove. Suppose the claim is true
when −χ(B \ A◦) ≤ n, n ∈ N, and let us prove it in the case −χ(B \ A◦) = n + 1. Recall that A and B
are connected Runge regions and A b B. Hence, (I) A and B \ A◦ have at least one common boundary
component γ1, thus satisfying γ1 ⊆ ∂A∩ ∂(B \A◦); and (II) B \A◦ has at least one boundary component
γ2 which does not intersect A (in particular, γ1 6= γ2 and so, ∂(B \ A◦) is not connected).
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Figure 1: Possibility 1: adding a boundary component.

Let us call g the genus of B \ A◦, and k ≥ 2 the number of connected components of ∂(B \ A◦). It
follows that χ(B \ A◦) = 2− 2g − k . Since −χ(B \ A◦) = n + 1 > 1 (that is, 2g + k ≥ 4), properties (I)
and (II) ensure the existence of a compact region W in R such that:

(i) W has genus 0 and three boundary components;

(ii) W ⊂ B, γ2 ⊆ ∂W and W ∩ A = ∅;

(iii) if γ ⊂ ∂W is a boundary component of W , then either γ ⊂ ∂B or γ ⊂ B◦.

Property (iii) is equivalent to the fact that ∂W ∩ ∂B has either one or two connected components.

Finally, we define B∗ := B \W . Now we observe that B∗ is Runge and connected and also, A b B∗ b B,
χ(B∗ \ A◦) = −n and χ(B \ B◦∗ ) = −1. By the induction hypothesis applied to the pair A b B∗,
there exist connected Runge compact sets N1, ... , Nn−2 in R such that A b N1 b · · · b Nn−2 b B∗,
χ(N◦1 \ A) ∈ {−1, 0}, χ(B◦∗ \ Nn−2) ∈ {−1, 0}, and χ(N◦i \ Ni−1) ∈ {−1, 0} for i = 2, ... , n − 2. Setting
Nn−1 := B∗, the sequence of connected Runge compact sets N1, ... , Nn−1 proves the inductive step and
concludes the proof of the claim.

The sequence {Mn}n∈N that satisfies the statement of the lemma is generated by the process described
in the Claim 3.3 applied to each pair Vm b Vm+1 with −χ(Vm+1 \V ◦m) > 1. We only have to add the new
necessary terms and re-enumerate the arising sequence accordingly.

Remark 3.4. It is interesting to think on the topological operations used in Lemma 3.2. The way we change
to the next term is with an Euler characteristic change of value −1 or 0. We can study both in detail:

• Case χ(B \ A◦) = 0. The compact set B has the same genus and the same number of boundary
components than A, hence B◦ \ A is a finite union of pairwise disjoint annuli.

• Case χ(B \ A◦) = −1. We put W := B \ A◦ and recall that W must have at least two boundary
components (k ≥ 2), one of them contained in ∂A and the other ones disjoint to A and contained
in ∂B. Since χ(W ) = 2− 2g − k = −1, where g is the genus of W , we have that g = 0 and k = 3.
This case is possible only in two different topological situations, illustrated in Figures 1 and 2.

We continue with the following lemma whose proof is based on the Runge–Mergelyan Theorem.

25Reports@SCM 2 (2016), 21–32; DOI:10.2436/20.2002.02.8.



A Geometric Application of Runge’s Theorem

Figure 2: Possibility 2: adding a handle and removing a boundary component.

Lemma 3.5. Let R be an open Riemann surface. Let A and B be bordered regions of R such that A b B
and χ(B \ A◦) ∈ {−1, 0}. Let τ > 0 be a positive number and let f = (f 1, f 2) : A→ C2 be a continuous
function, which is holomorphic on A◦, and such that max{<(f 1),<(f 2)} > τ on ∂A. Then, for any δ > 0,
there exists a continuous function F : B → C2, which is holomorphic on B◦, and satisfying the following
properties:

(a) ‖F − f ‖A < δ;

(b) max{<(F 1),<(F 2)} > τ on B \ A;

(c) max{<(F 1),<(F 2)} > τ + 1 on ∂B.

Proof. We distinguish cases depending on the value of the Euler characteristic of B \ A◦.

Case 1: χ(B \ A◦) = 0.

In this case B \ A◦ = A1 ∪ · · · ∪ Am, where each Ai is an annulus for all i ∈ {1, ... , m}. In order to
simplify notation we will suppose that m = 1. The general case is almost identical and consists of applying
the same argument to each annulus Ai . Therefore, B \ A◦ is an annulus.

So, ∂(B \A◦) consists of two disjoint connected components, that is, ∂(B \A◦) = c ∪ d where c = ∂A
and d = ∂B. Since max{<(f 1),<(f 2)} > τ on ∂A, we can find an open cover Σ̃ = {Oλ : λ ∈ Λ} of c
such that

<(f 1) > τ or <(f 2) > τ , on each Oλ, λ ∈ Λ. (1)

Since ∂A is compact, there exists a finite subcover Σ = {O1, ... , Ok} of ∂A contained in Σ̃. Take arcs
α1, ... ,αn in c such that the following properties are satisfied:

• αj ⊂ Oh(j) for some h(j) ∈ {1, ... , k}, ∀j = 1 ... , n;

• ∪nj=1αj = c ;

• α◦j1 ∩ α
◦
j2

= ∅, ∀j1, j2 ∈ {1, ... , n}, j1 6= j2.

We denote by pj ∈ c the initial point of the curve αj , ∀j = 1, ... , n. We relabel the arcs αj , j = 1, ... , n, in
order to ensure that the final point of αj−1 is the initial point pj of αj , for any j > 1. We adopt the cyclic
notation, p1 = pn+1, to identify the initial point of α1 and the final point of αn.

http://reportsascm.iec.cat26

http://reportsascm.iec.cat


Ildefonso Castro-Infantes

Figure 3: B \ A◦.

Let (I1, I2) be subsets of {1, ... , n} satisfying: (1) I1 ∪ I2 = {1, ... , n} and I1 ∩ I2 = ∅; and (2) if j ∈ Iµ
then <(f µ) > τ on αj , µ ∈ {1, 2}. We consider now a family of non-intersecting simple curves from c to
d that we denote {γj}j=1,...,n. We suppose that the initial point of γj is pj ∈ c and we call its final point
qj ∈ d . It follows that γj ∩ (c ∪ d) = {pj , qj} for any j = 1, ... , n; see Figure 3.

We define now an auxiliary continuous function g = (g1, g2) : A ∪ γ1 ∪ · · · ∪ γn → C2, which is
holomorphic on A and satisfies the following properties:

(i) g |A = f ;

(ii) if j − 1 ∈ Iµ then <(gµ) > τ on γj and <(gµ(qj)) > τ + 1 ∀j = 1, ... , n (here, we call α0 = αn and
q0 = qn);

(iii) if j ∈ Iµ then <(gµ) > τ on γj and <(gµ(qj)) > τ + 1 ∀j = 1, ... , n;

where µ ∈ {1, 2}. Such a function g exists due to properties (1) and (2) above.

Since A is Runge, the set M = A ∪ γ1 ∪ · · · ∪ γn is also Runge and the Runge–Melgerlyan Theorem
gives a continuous function G : B → C2, which is holomorphic on B◦ and satisfies the following properties:

(iv) ‖G − g‖A < δ/2 on A; here, δ is the positive number given in the statement of the lemma;

(v) max{<(G 1),<(G 2)} > τ on ∂A = c ;

(vi) if j − 1 ∈ Iµ for µ ∈ {1, 2}, then <(Gµ) > τ on γj and <(Gµ(qj)) > τ + 1, ∀j = 1, ... , n;

(vii) if j ∈ Iµ for µ ∈ {1, 2}, then <(Gµ) > τ on γj and <(Gµ(qj)) > τ + 1, ∀j = 1, ... , n.

Summarizing, the function G formally satisfies properties (a), (b), and (c) on the set M and, by
continuity, in a neighbourhood of M, but not necessary in the whole B.

Given j ∈ {1, ... , n}, there is an open neighbourhood Γj on B of γj ∪αj ∪γj+1 such that G still satisfies
(a), (b), and (c) in any set Γj , j ∈ {1, ... , n}. More concretely, if j ∈ Iµ for µ ∈ {1, 2} then

<(Gµ) > τ on Γj and <(Gµ) > τ + 1 on Γj ∩ ∂B, (2)
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Figure 4: B \ A◦.

∀j = 1, ... , n. We introduce some more notation. For any fixed j ∈ {1, ... , n}, we consider the topological
closed disk in B \ A◦ whose boundary contains the set γj ∪ αj ∪ γj+1 and is disjoint from αl , l 6= j . We
call Ωj the complement of Γj in this disk; see Figure 4.

Set:

(viii) Ω1 =
⋃

j∈I1 Ωj ;

(ix) Ω2 =
⋃

j∈I2 Ωj ;

(x) Γ1 =
⋃

j∈I1 Γj ;

(xi) Γ2 =
⋃

j∈I2 Γj .

It follows that
B = A ∪ Γ1 ∪ Γ2 ∪ Ω1 ∪ Ω2. (3)

Consider the functions

G̃ 1 : A ∪ Γ1 ∪ Ω2 → C, G̃ 1 =

{
G 1 in A ∪ Γ1,
τ + 2 in Ω2,

(4)

G̃ 2 : A ∪ Γ2 ∪ Ω1 → C, G̃ 2 =

{
G 2 in A ∪ Γ2,
τ + 2 in Ω1,

(5)

and recall that (A ∪ Γ1) ∩ Ω2 = ∅ and (A ∪ Γ2) ∩ Ω1 = ∅.
The sets A∪Γ1∪Ω2 and A∪Γ2∪Ω1 are Runge in B, whereas the functions G̃ 1 and G̃ 2 are continuous,

and holomorphic on the interior. Hence, by the Runge Theorem, there exist two holomorphic functions on
B, which we call F 1 and F 2, that approach G̃ 1 and G̃ 2, respectively. Then, if the approximation is close
enough, F = (F 1, F 2) : B → C2 is holomorphic and satisfies:

(xii) ‖F − G̃‖A < δ/2;

(xiii) F 1 approaches G̃ 1 in A ∪ Γ1 ∪ Ω2;

http://reportsascm.iec.cat28

http://reportsascm.iec.cat


Ildefonso Castro-Infantes

Figure 5: The arc β.

(xiv) F 2 approaches G̃ 2 in A ∪ Γ2 ∪ Ω1.

Let us check that F solves the Lemma. Indeed:

• By properties (iv) and (v), G̃ = G on A, and so (xii) gives ‖F − G‖A < δ/2. Thus, taking into
account (i) and (iv), we get ‖F − f ‖A < ‖F − G‖A + ‖G − f ‖A < δ.

• In Γ1, we have <(G 1) > τ (by equation (2) and property (x)) and so, <(F 1) > τ on Γ1 provided the
approximation in (xiii) is close enough; take into account equation (4). Hence, max{<(F 1),<(F 2)} >
τ on Γ1.

• In Γ2, we have <(G 2) > τ (by equation (2) and property (xi)) and so, <(F 2) > τ on Γ2 provided the
approximation in (xiv) is close enough; use equation (5). Therefore, max{<(F 1),<(F 2)} > τ on Γ2.

• In Ω1, we have <(G̃ 2) > τ (by equation (2) and property (viii)) and so, <(F 2) > τ on Ω1 provided
the approximation in (xiv) is close enough. Thus max{<(F 1),<(F 2)} > τ on Ω1.

• In Ω2, we have <(G̃ 1) > τ (by equation (2) and property (ix)) and so, <(F 1) > τ on Ω2 provided
the approximation in (xiii) is close enough. Hence max{<(F 1),<(F 2)} > τ on Ω2.

We finish the discussion with the set ∂B. On the one hand, we have <(G̃ 2) > τ + 1 on Ω1 (by

equations (2) and (5)). On the other hand, <(G̃ 1) > τ + 1 on Ω2 (by equations (2) and (4)). Finally,
max{<(G 1),<(G 2)} > τ + 1 on ∂B \ (Ω1 ∪ Ω2) = (Γ1 ∪ Γ2) ∩ ∂B. Indeed, G 1 > τ + 1 on ∂B ∩ Γ1 and
G 2 > τ + 1 on ∂B ∩ Γ2; see equation (2). Thus, max{<(F 1),<(F 2)} > τ + 1 in ∂B.

This concludes the proof in case 1.

Case 2: χ(B \ A◦) = −1.

By Remark 3.4, B can be described as a neighbourhood of the set that we obtain when we add an arc
in B \ A to A with initial point and final point in ∂A. We call this arc β and we observe that A ∪ β is a
deformation retract of B; see Figures 5 and 6.

Consider a continuous function g : A ∪ β → C2, which is holomorphic on A◦ and satisfies g = f on A
and max{<(g1),<(g2)} > τ on β. By Runge’s Theorem we may approximate g on A∪ β by holomorphic
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Figure 6: The arc β.

functions f̂ on B. If we take a closed neighbourhood Â of A ∪ β on B◦ with χ(B \ Â◦) = 0 (recall that
A ∪ β is a deformation retract of B), and the approximation is close enough, the function f̂ |Â formally
satisfies the hypothesis (a), (b), and (c) of the lemma. This reduces the proof to Case 1.

Proof of Theorem 3.1. Let {Mn}n∈N be an exhaustive sequence of Runge and connected bordered regions
in R such that χ(Mn+1 \ Mn) ∈ {−1, 0} for all n ∈ N. Such sequences exists by Lemma 3.2. Given a
sequence of real numbers {εn}n∈N, εn > 0, a recursive use of Lemma 3.5 supplies a sequence of continuous
functions fn = (f 1

n , f 2
n ) : Mn → C2, n ∈ N, satisfying:

(a) fn is holomorphic on M◦n , ∀n ∈ N;

(b) ‖fn+1 − fn‖Mn < εn, ∀n ∈ N;

(c) max{<(f 1
n ),<(f 2

n )} > n on ∂Mn, ∀n ∈ N;

(d) max{<(f 1
n+1),<(f 2

n+1)} > n on Mn+1 \M◦n , ∀n ∈ N.

Indeed, for the basis of the induction, choose any continuous function f1 : M1 → C2, which is
holomorphic on M◦1 , and satisfies max{<(f 1

1 ),<(f 2
1 )} > 1 on ∂M1. For instance, we may take f1 to

be a suitable constant in C2. For the inductive step, let n ∈ N and suppose that we have func-
tions f1 : M1 → C2, ... , fn : Mn → C2 satisfying formally the above properties. Since Mn b Mn+1

and χ(M◦n+1 \ Mn) ∈ {−1, 0}, Lemma 3.5 applied to τ = n and δ = εn gives a continuous function
F = (F 1, F 2) : Mn+1 → C2, which is holomorphic in M◦n+1, and satisfies ‖F − fn‖ < εn. In addition,
max{<(F 1),<(F 2)} > n on Mn+1 \Mn and max{<(F 1),<(F 2)} > n + 1 on ∂Mn+1. Obviously, we finish
the induction setting fn+1 = F .

Let {fn : Mn → C2}n∈N be the sequence we have already found satisfying (a)–(d). Let us see first that,
up to a suitable choice of the numbers εn, the sequence fn converges uniformly on compact sets of R. It
is enough to prove that (for a good choice of the εn) given ε > 0 and a compact set K ⊂ R, there exists
n0 ∈ N such that if p, q ≥ n0 then ‖fp − fq‖K ≤ ε. It is required that n0 is large enough to satisfy that
K ⊂ Mn0 , so that fp and fq are well defined on K . Indeed, if we take the sequence {εn}n∈N such that
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∞∑
n=1

εn < +∞ , we can consider n0 such that
∞∑

n=n0+1
εn < ε and K ⊂ Mn0 . Then, given p, q ≥ n0, p > q,

‖fp − fq‖K = ‖
p−q∑
k=1

(fq+k − fq+k−1) ‖K ≤
p−q∑
k=1

‖fq+k − fq+k−1‖Mq+k−1
<

p−q∑
k=1

εq+k−1 =

p∑
n=q

εn < ε.

Therefore, {fn}n∈N is a Cauchy sequence with the maximum norm and, consequently, it converges uniformly
on compact sets to a function f : R → C2. Furthermore, the convergence Harnack theorem asserts that f
is holomorphic and so, <(f ) : R → R2 is harmonic. On the other hand, if we fix ε and n0 as above and we
take limits in the previous estimation, we obtain that

‖f − fn‖Mn ≤ ε, ∀n ≥ n0. (6)

To finish the proof, let us check that <(f ) : R → R2 is proper. Let {xn}n∈N ⊂ R be a divergent
sequence. Then for each n ∈ N there exists mn ∈ N such that xn ∈ Mmn\Mmn−1 and, by (d), ‖<(fn(xn))‖ >
mn. Hence, using (6), we deduce that ‖<(f (xn))‖ > mn − ε. But now, as {xn}n∈N is divergent on R and
{Mn}n∈N is increasing, we have that mn depends on n in such a way that if n → +∞, then mn → +∞.
Therefore, it is clear that ‖<(f (xn))‖Mn → +∞ as n → +∞, and {<(f (xn))} is a divergent sequence.
Thus, ϕ = <(f ) : R → R2 is proper, which concludes the proof.
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On the concept of fractality for some groups

1. Introduction

The subgroups of the group of automorphisms of the d-adic tree T (i.e., a regular rooted tree with d
branches going down at every vertex) are an important source of groups with interesting properties. For
example, finitely generated torsion infinite groups can be constructed easily, giving a negative answer to
the General Burnside Problem. The large amount of articles about this topic in the last years shows their
interest.

Given a subgroup G of Aut T , the section of an element g ∈ G at a vertex u is an automorphism
which represents how g acts on the subtree of T hanging from the vertex u (the formal definition is given
in Section 2). We say that G is self-similar if, for each element g ∈ G and each vertex u ∈ T , the section
of g at the vertex u belongs to G again. This is a natural property that a majority of the most interesting
subgroups of Aut T possess.

It is usual to work with vertex and level stabilizers of G , i.e., the subgroups of all automorphisms in G
that fix a vertex u or a whole level Ln of the tree, denoted by StabG (u) and StabG (Ln), respectively. Then
one can consider the homomorphisms ψu, which sends each g ∈ StabG (u) to its section at the vertex u,
and ψn, which sends each g ∈ StabG (Ln) to the dn-tuple of its sections at the n-th level. Observe that in
these cases the sections are just the restrictions to the corresponding subtrees.

If G = Aut T , then the homomorphisms ψu and ψn are surjective onto Aut T and Aut T × dn

· · ·×Aut T ,
respectively. On the other hand, if G is self-similar then the images of ψu and ψn are contained in G and

G × dn

· · · × G , and we will consider these sets to be the codomains of those maps. It is natural to ask
whether ψu and ψn are also onto in this case. For many interesting groups, ψu is known to be onto, i.e.,
ψu(StabG (u)) = G for each u ∈ T , and the group G is then called fractal, recurrent or self-replicating
(see [3, 9]). However, in general, it is too strong to ask ψn to be surjective, and we content ourselves

with the image of ψn being a subdirect product of G × dn

· · · ×G , namely that ψu(StabG (Ln)) = G for each
u ∈ Ln. In some papers, this condition is only required for n = 1; however, as we shall see, it is not always
inherited by the rest of the levels. Thus it is necessary to make a distinction between these two concepts.
Following terminology from previous papers, G is said to be strongly fractal or strongly self-replicating if
ψu(StabG (L1)) = G for all u ∈ L1. And we say that G is super strongly fractal if ψu(StabG (Ln)) = G for
each n ∈ N and u ∈ Ln.

Obviously, every super strongly fractal group is also strongly fractal, and every strongly fractal group is
fractal, but there is some confusion in the literature about the converses. In several papers, fractal groups
are claimed to be the same as strongly fractal groups, or else fractal groups are simply introduced by using
the definition of strong fractality (see [1, 3, 4, 5, 6]). In some other papers, a distinction is made between
these two concepts (see [2, 9]), but no examples can be found in the literature where a certain fractal
group is shown not to be strongly fractal. On the other hand, strongly fractal and super strongly fractal
groups have not been clearly distinguished either. Since a self-similar group that acts transitively on each
level can be checked to be fractal by looking only at the vertices on the first level, one may think that the
same holds for the property of being strongly fractal, see for example the paragraph after [9, Def. 3.6].
This would mean that being strongly fractal and super strongly fractal are equivalent. However, as we shall
see, this is not the case.

Our aim in this article is to fill this gap. On the one hand, for every d ≥ 3, we give explicit examples of
groups that are fractal but not strongly fractal. More specifically, we show that a certain subgroup of the
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Hanoi Towers group is of this type. We remark that the restriction to d ≥ 3 is necessary for these examples
to exist, since one can easily show that for d = 2 a fractal group is always strongly fractal. In proving
that those groups are not strongly fractal, we have obtained a couple of results that allow us to estimate
the image of a level stabilizer under ψu, which may have some interest of their own. On the other hand,
we also give examples of groups which are strongly fractal but not super strongly fractal, and examples of
super strongly fractal groups.

These examples belong to the class of the so-called Grigorchuk–Gupta–Sidki groups (GGS-groups, for
short), which are a natural generalisation of the Grigorchuk group [8], and the Gupta–Sidki examples
from [11].

2. Preliminaries

Let us consider a set X with d elements. The d-adic tree T is a tree whose set of vertices is the free
monoid X ∗, where a word u is a descendant of v if u = vx for some x ∈ X . The only word of length zero
is the empty word ∅, which is the root of the tree T . If we consider the words of length at most n we have
a finite subtree Tn, and the words whose length is exactly n form the n-th level of the tree, Ln.

An automorphism of the d-adic tree is a map preserving incidence between vertices. All automorphisms
of T form a group Aut T under composition, where we write fg for g ◦ f . Thus (fg)(u) = g(f (u)) for
every vertex u of T .

Let us consider the natural projection πn : Aut T −→ Aut Tn, which sends every automorphism to its
restriction to Tn. Observe that the stabilizer Stab(Ln) of the n-th level is the kernel of πn, so it is a normal
subgroup in Aut T , and we have Aut Tn

∼= Aut T/Stab(Ln).

An important observation is that every automorphism g ∈ Aut T can be fully described by saying for
each vertex u ∈ T how g permutes the d vertices hanging from u. So, there is a permutation α of X
(which clearly depends on u) such that g(ux) = g(u)α(x). We say that α is the label of g at the vertex
u, and we denote it by g(u).

Since T ∼= Tu, where Tu denotes the subtree hanging from a vertex u, we have Aut T ∼= Aut Tu. We
speak about the section of g at the vertex u and we denote it by gu, to refer to the automorphism defined
by g(uv) = g(u)gu(v) for each vertex v . Then we have the following formulas:

(f −1)u = (ff −1(u))
−1, (fg)u = fugf (u), fuv = (fu)v , (1)

and
(f g )u = (gg−1(u))

−1fg−1(u)gg−1f (u). (2)

Also, we define the homomorphism ψn : Stab(Ln) −→ Aut T × dn

· · · × Aut T which sends g ∈ Stab(Ln)
to the dn-tuple of its sections (gu1 , ... , gudn ), with ui ∈ Ln. In the same way, for the stabilizer Stab(u) of
the vertex u, we have a homomorphism denoted by ψu which sends g ∈ Stab(u) to gu.

Sometimes it is useful to think of Aut T as a semidirect product.

Proposition 2.1. Let T be the d-adic tree and let us consider the following subgroup for each n ∈ N:

Hn = {h ∈ Aut T | hu = 1 ∀u ∈ Ln}.

Then, we have Aut T = Hn n Stab(Ln).
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Observe that, for f ∈ Stab(Ln) and g = hg ′ ∈ Aut T , with h ∈ Hn and g ′ ∈ Stab(Ln), we have

(f g )u = (fh−1(u))
gu = (fh−1(u))

g ′u for all u ∈ Ln. (3)

Let now G ≤ Aut T . Then we can consider the stabilizers in G of each vertex, StabG (u) = Stab(u)∩G ,
and the level stabilizers StabG (Ln) = ∩u∈Ln StabG (u) = Stab(Ln) ∩ G . So we have the restrictions of ψn

and ψu to StabG (Ln) and StabG (u), respectively. Since we are interested in those groups for which the

images under ψu and ψn are in G and G × dn

· · · × G , we give the following definition.

Definition 2.2. We say that a group G ≤ Aut T is self-similar if for each element of G its sections are
also elements of G ; in other words, if

{gu | g ∈ G , u ∈ T} ⊆ G . (4)

It is easy to prove by induction on the length of a vertex, and using the first two formulae in (1), that
if (4) is satisfied by the vertices of the first level then the group is self-similar (see [10, Prop. 3.1]).

Lemma 2.3. A group G = 〈S〉 ≤ Aut T is self-similar if and only if sx ∈ G for each s ∈ S and x ∈ X .

Observe that, even if in the case of the whole group of automorphisms Aut T the homomorphisms ψn

and ψu are surjective, this might not be true in general. According to this, we have the following definitions.

Definition 2.4. Let G ≤ Aut T be a self-similar group. Then,

(i) we say that G is fractal if ψu(StabG (u)) = G for each vertex u ∈ T ;

(ii) we say that G is strongly fractal if ψx(StabG (L1)) = G for each x ∈ X ;

(iii) we say that G is super strongly fractal if ψu(StabG (Ln)) = G for each u ∈ Ln and each n ∈ N.

Notice that the definition of being super strongly fractal does not imply that ψn is surjective from G

to G × dn

· · · × G , but only that ψn(StabG (Ln)) is a subdirect product in G × dn

· · · × G . The same remark
applies to strongly fractal groups with n = 1.

There is a special case in which the first two definitions are equivalent.

Lemma 2.5. Let G ≤ Aut T and consider a d-cycle σ ∈ SX . If for each g ∈ G we have g(∅) = σk for
some k ∈ N and G is fractal, then G is strongly fractal.

Proof. Let g ∈ StabG (x) for x ∈ X . Then σk(x) = x which only happens if k ≡ 0 (mod d). This implies
that g ∈ StabG (L1) so, StabG (x) = StabG (L1) and we are done.

Observe that for d = 2 the label at the root must be 1 or (1 2) so, according to the previous lemma,
in this case being fractal and being strongly fractal are equivalent.

This can be generalised, to obtain another important corollary that follows from the previous lemma in
the case d = p, where p is a prime. If we consider T to be the p-adic tree, Aut T is a profinite group which
has a standard Sylow pro-p subgroup consisting of automorphisms which have powers of a fixed p-cycle
as a label in every vertex. Then, the previous lemma shows that, for every subgroup of the Sylow pro-p
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subgroup, being fractal and strongly fractal are equivalent. For example, this happens for the GGS-groups
(for the definition see Section 4).

One of our goals is to give examples of subgroups of Aut T for d ≥ 3 which are fractal but are not
strongly fractal. We next give the definition of being level transitive, because the examples that we present
are of this type and also because in this case it is easier to check if a group is fractal or not.

Definition 2.6. Let G ≤ Aut T . We say that G is level transitive or that acts spherically transitively on
T , if it is transitive on each level.

In a similar way to Lemma 2.3, in some cases, to check whether a group is fractal it is enough to look
at the vertices on the first level (for a reference, see [9, Sect. 3]).

Lemma 2.7. If G ≤ Aut T is transitive on the first level and ψx(StabG (x)) = G for some x ∈ X , then G
is fractal and level transitive.

Since we will want to prove that a group is not strongly fractal, we are interested in identifying which
is the first level stabilizer. We present a tool that we have developed in order to do this in the following
lemma. Let us denote by ρ the homomorphism from G to Sd sending each g ∈ G to the label of g at the
root, g(∅). We use the notation 〈S〉G for the normal closure in G of the subgroup generated by the set S .

Lemma 2.8. Let G ≤ Aut T and put J = ρ(G ). Suppose that we have a presentation J = 〈Y | R〉 and
let θ : F −→ J be the epimorphism corresponding to this presentation, where F is the free group generated
by Y . If there exists a surjective homomorphism φ : F −→ G making the following diagram commutative

F G

J,

-φ

@
@
@R

θ
?

ρ

then StabG (L1) = 〈φ(R)〉G .

Proof. We know that ker θ = 〈R〉F . On the other hand, since φ is surjective, every g ∈ G can be written
as g = φ(x) for some x ∈ F , and then g ∈ ker ρ if and only if x ∈ ker(ρ ◦ φ). Consequently,

StabG (L1) = ker ρ = φ(ker(ρ ◦ φ)) = φ(ker θ) = φ(〈R〉F ) = 〈φ(R)〉G ,

which completes the proof.

Notice that the actual condition we are asking about φ is to be surjective since, by the universal property
of free groups, we are always able to construct some φ making the diagram commutative. In other words,
the point is whether for each y ∈ Y we can choose an element gy ∈ ρ−1(θ(y)), in such a way that
{gy | y ∈ Y } generates the whole group G or not.

Now, in the following lemma we present another new result, which will help us proving that the image
of a level stabilizer under ψu is strictly contained in G .

Lemma 2.9. Let G ≤ Aut T be a self-similar group. If K = 〈S〉G ⊆ StabG (Ln) for some n ∈ N and
ψu(S) ⊆ N for each u ∈ Ln, where N E G , then ψu(K ) ⊆ N for each u ∈ Ln.
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Proof. Consider k ∈ K and let us write k = (sε11 )g1 · · · (sεrr )gr , where εi ∈ {−1, 1}, si ∈ S and gi ∈ G for
each i = 1, ... , r . Let u ∈ Ln. Since K ≤ StabG (Ln) we know that k ∈ StabG (u) and we have

ψu(k) = ψu(sg11 )ε1 · · ·ψu(sgrr )εr .

Thus, it is enough to see that ψu(sg ) ∈ N for each s ∈ S , g ∈ G . Since G ≤ Aut T and Aut T = Hn n
Stab(Ln), we write each g = ht where h ∈ Hn and t ∈ Stab(Ln). Now by (3) we have ψu(sg ) = (sh−1(u))

tu

for each u ∈ Ln, and since ψh−1(u)(S) ⊆ N and N is normal in G , it is enough to check that tu belongs

to G . We know that G is self-similar so, gv ∈ G for each v ∈ T and, in particular, for v = h−1(u). But
gh−1(u) = hh−1(u)tu = tu because h ∈ Hn, so we are done.

Now, let us introduce a stronger version of the previous lemma that will help us checking whether a
strongly fractal group is super strongly fractal or not.

Lemma 2.10. Let G be level transitive and super strongly fractal. If K = 〈S〉G ⊆ StabG (Ln) for some
n ∈ N, then ψu(K ) = 〈ψv (S) | v ∈ Ln〉G for any u ∈ Ln.

Proof. Let us denote N = 〈ψv (S) | v ∈ Ln〉G . Since ψu(S) ⊆ N for every u ∈ Ln, which is a normal
subgroup, the inclusion ψu(K ) ⊆ N follows from the previous lemma.

Now, let g = (ψu1(s1)ε1)g1 · · · (ψur (sr )εr )gr ∈ N. Since G is level transitive for every ui ∈ {u1, ... , ur},
there is some fi ∈ G such that fi (ui ) = u. Then, by (3),

ψu(s fii )((fi )ui )
−1

= ψui (si ).

Then we can write g = (ψu(s f11 )ε1)g
′
1 · · · (ψu(s frr )εr )g

′
r , where g ′i = ((fi )ui )

−1gi ∈ G . From the fact that G is
super strongly fractal, we know that there are some hi ∈ StabG (Ln) such that ψu(hi ) = g ′i for i = 1, ... , r .
Since

g = (ψu(s f11 )ε1)g
′
1 · · · (ψu(s frr )εr )g

′
r = (ψu(s f11 )ε1)ψu(h1) · · · (ψu(s frr )εr )ψu(hr )

= ψu((sε11 )f1h1 · · · (sεrr )frhr ) ∈ ψu(K ),

we are done.

In particular, we have the following result when the group is strongly fractal.

Corollary 2.11. Let G be a strongly fractal group acting transitively on the first level. If K = 〈S〉G and
K ⊆ StabG (L1) then ψx(K ) = 〈ψy (S) | y ∈ X 〉G for any x ∈ X .

Finally, let us introduce another lemma that will help us proving that a group is super strongly fractal.
This lemma tells us that in some cases, it suffices to check whether in each level stabilizer there are elements
whose sections at vertices on this level generate the whole group.

Lemma 2.12. Let G ≤ Aut T be a self-similar group such that there is a rooted automorphism a ∈ G ,
with a(∅) being a d-cycle. If for each n ∈ N we have 〈ψun(StabG (Ln)) | un ∈ Ln〉 = G , then G is super
strongly fractal.
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Proof. The proof works by induction on the length of the vertices. Let x ∈ X and g ∈ G . We know
that there are some y1, ... , yr ∈ X such that g = ψy1(g1)ε1 · · ·ψyr (gr )εr , where gi ∈ StabG (L1) and
εi ∈ {1,−1}. Then for each i = 1, ... , r we have aji (yi ) = x for some ji ∈ {0, ... , d − 1}. Then,

considering gaji
i , we get an element on the first level stabilizer such that (gaji

i )x = (gi )yi . Then the element

h = (gaj1
1 )ε1 · · · (gajr

r )εr ∈ StabG (L1) satisfies hx = g so, ψx(StabG (L1)) = G .

Now let us suppose that we know the result for length n − 1 and let us see it for n. Let v = x1 · · · xn
and g ∈ G . By assumption, we know that g = ψw1(g1)ε1 · · ·ψwr (gr )εr where wi ∈ Ln, gi ∈ StabG (Ln) and
εi ∈ {1,−1} for each i = 1, ... , r . It suffices to show that for i = 1, ... , r there is some hi ∈ StabG (Ln)
such that (hi )v = (gi )wi , because then h = hε11 · · · hεrr ∈ StabG (Ln) and hv = g , as desired.

Let w be an arbitrary vertex in Ln. Then w = y1 · · · yn with yi ∈ X . For each k = 1, ... , n there is
some jk = 0, ... , d − 1 such that ajk (yk) = xk . By the inductive assumption, a ∈ ψu(StabG (Lk)) for every
u ∈ Lk , with k = 1, ... , n − 1. Thus, for each k = 1, ... , n − 1 there is some fk ∈ StabG (Lk) such that
(fk)y1...yk = ajk+1 . Then, if we consider the element f = aj1f1 · · · fn−1, which belongs to Hn, we obtain that
f (w) = v . Thus, in particular for each i = 1, ... , r , there is some ti ∈ Hn such that ti (wi ) = v . Then
hi = g ti

i ∈ StabG (Ln) and, by (3), (hi )v = (gi )t−1
i (v) = (gi )wi .

Remark 2.13. In particular, in the conditions of the previous lemma, it is enough for a group G to be super
strongly fractal having one vertex un ∈ Ln such that ψun(StabG (Ln)) = G for each n ∈ N.

3. Fractal groups which are not strongly fractal

In this section we present an example for each d ≥ 3 which is fractal but not strongly fractal. Even more,
that example is a group acting spherically transitively on T . We denote by x1, ... , xd the elements of X ,
namely, the vertices of the first level.

The example that we consider is a subgroup of the Hanoi Towers group, which is defined as follows for
each d ≥ 3. For 1 ≤ i < j ≤ d , we define the element aij which has the permutation (xi xj) at the root
and, for each vertex on the first level,

(aij)xk =

{
1 if k = i , j ,

aij otherwise.

The Hanoi Towers group is H = 〈aij | 1 ≤ i < j ≤ d〉. Although H is strongly fractal (see [10,
pag. 13]), we are going to show that it has a subgroup which is fractal but not strongly fractal.

Consider the subgroup G = 〈ai ,i+1 | i = 1, ... , d − 1〉 ≤ H. To simplify the notation, we write
bi = ai ,i+1. As a consequence of Lemma 2.3, it is clear that G is self-similar, since (bj)xi ∈ G for each
j = 1, ... , d − 1 and i = 1, ... , d . Let us see that G is fractal. First observe that, since the element
bd−1bd−2 · · · b1 has label (x1x2 · · · xd) at the root, G is transitive on the first level so, by Lemma 2.7, it is
enough to show that ψx1(StabG (x1)) = G .

It then suffices to check that each bi ∈ ψx1(StabG (x1)). Since bi ∈ StabG (x1) for i 6= 1 and in this
case ψx1(bi ) = bi , it only remains to check that b1 ∈ ψx1(StabG (x1)). To show this, consider the element
bb2b1
1 . First of all observe that (bb2b1

1 )(∅) = (x1x2)(x1x2x3) = (x2x3) so, bb2b1
1 belongs to StabG (x1). On the
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other hand, using (2) we have

(bb2b1
1 )x1 = ((b2b1)(b2b1)−1(x1))

−1(b1)(b2b1)−1(x1)(b2b1)(b2b1)−1b1(x1) = ((b2b1)x3)−1(b1)x3(b2b1)x3

= ((b2)x3(b1)x2)−1b1(b2)x3(b1)x2 = b1.

We obtain that ψx1(bb2b1
1 ) = b1. Thus, we conclude that ψx1(StabG (x1)) = G as desired.

Let us now calculate StabG (L1). We have ρ(G ) = 〈ρ(bi ) | i = 1, ... , d − 1〉 = Sd . We know that a
presentation of the group Sd can be obtained by considering {τi = (i i + 1)}i=1,...,d−1 as generators, and
taking the relations:

τ2i = 1, i = 1, ... , d − 1,

τiτj = τjτi , |i − j | > 1,

(τiτi+1)3 = 1, i = 1, ... , d − 2.

In order to apply Lemma 2.8, let F be the free group generated by {τ1, ... , τd−1} and θ : F −→ Sd

the epimorphism corresponding to the presentation above. Thus ker θ = 〈τ2i , [τi , τj ], (τiτi+1)3 | i , j =
1, ... , d − 1, |i − j | > 1〉F . For each i = 1, ... , d − 1 we have bi ∈ ρ−1(θ(τi )) and the bi generate the whole
group G . We can define φ : F −→ G by sending τi to bi for each i = 1, ... , d − 1. Then φ is a surjective
homomorphism that makes the diagram commutative. Now, applying the lemma, if

S = {{b2
i }i=1,...,d−1, {(bibi+1)3}i=1,...,d−2, {[bi , bj ]}|i−j |>1},

then we obtain that StabG (L1) = 〈S〉G .

To conclude, let us see that ψxk (StabG (L1)) 6= G for some k = 1, ... , d . In fact we will see that this
happens for any k ∈ {1, ... , d}. One can check that

(b2
i )xk =

{
b2
i if k 6= i , i + 1,

1 if k = i , i + 1,

((bibi+1)3)xk =


(bibi+1)3 if k 6= i , i + 1, i + 2,

bibi+1 if k = i ,

bi+1bi if k = i + 1,

bibi+1 if k = i + 2,

and, for |i − j | > 1,

([bi , bj ])xk =

{
[bi , bj ] if k 6= i , i + 1, j , j + 1,

1 otherwise.

To see the importance of the condition |i − j | > 1 in the last case, let us calculate, for example, [bi , bj ]xi :

[bi , bj ]xi = (b−1i b
bj
i )xi = (b−1i )xi (b

bj
i )xi+1 = ((bj)b−1

j (xi+1)
)−1(bi )b−1

j (xi+1)
(bj)b−1

j bi (xi+1)

= ((bj)xi+1)−1(bi )xi+1(bj)xi = b−1j bj = 1.

Here, it is important that bj does not move xi and xi+1, which happens since |i − j | > 1. On the other
hand, observe that b2

i and [bi , bj ] when |i − j | > 1 are the identity automorphism, because they belong to
the first level stabilizer and the sections at the first level are just themselves or the identity.
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If σ : Sd −→ {1,−1} is the homomorphism sending each permutation to its signature, observe that
for any s ∈ S and k = 1, ... , d we have σ(ψxk (s)(∅)) = 1 because ψxk (s) is always a product of an even

number of bi . Then, if we consider N = 〈ψxk (S) | k = 1, ... , d〉G we still have that σ(n(∅)) = 1 for any
n ∈ N.

Now, we have StabG (L1) = 〈S〉G and ψxk (S) ⊆ N, where N is normal in G . So, by Lemma 2.9, we
conclude that ψxk (StabG (L1)) ⊆ N. But N cannot be the whole group G because each n ∈ N has an even
permutation at the root and, consequently, bi /∈ N for each i = 1, ... , d − 1. In other words, ρ(N) ⊆ Ad

while ρ(G ) = Sd , so N 6= G .

4. Strongly fractal groups which are not super
strongly fractal

In order to see an example of a group which is strongly fractal but not super strongly fractal, we have to
introduce the GGS-groups. These groups are subgroups of Aut T where T is the d-adic tree for d ≥ 2.

Definition 4.1. Let us consider the rooted automorphism corresponding to (1 ... d) and denote it by
a. Given a non-zero vector e = (e1, ..., ed−1) ∈ (Z/dZ)d−1, we define an automorphism b ∈ Stab(L1)
by means of ψ(b) = (ae1 , ... , aed−1 , b). Then, a GGS-group is the group G generated by these two
automorphisms a and b.

From now on we consider d = p where p is a prime. First of all, let us see that every GGS-group is
strongly fractal. For these groups StabG (L1) = 〈b〉G = 〈b, ba, ... , bap−1〉. To simplify notation, we write

bi = bai .

Lemma 4.2. Let G be a GGS-group. Then G is strongly fractal.

Proof. Let us see that G is fractal. Since G is in the Sylow pro-p subgroup of Aut T corresponding
to the cycle (1 ... p), this is enough to show that G is strongly fractal because of the discussion after
Lemma 2.5. Since 〈a〉 acts transitively on the first level, according to Lemma 2.7 it suffices to show that
ψx(StabG (x)) = G for some x in the first level. Observe that conjugating b by powers of a permutes the
sections of b at the first level. In other words,

ψ(bi ) = (aep−i+1 , ... , aep−1 , b, ae1 , ... , aep−i ).

Then, since e is non-zero, there is some ep−i+1 6= 0 and since b1, bi ∈ StabG (x1) we obtain that
ψx1(StabG (x1)) ≥ 〈b, aep−i+1〉 = G . We conclude that G is strongly fractal.

Let us consider a GGS-group with constant defining vector. By replacing b with a suitable power of b,
we may assume that e = (1, ... , 1).

Proposition 4.3. Let G be a GGS-group with constant defining vector. Then G is strongly fractal but not
super strongly fractal.
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Proof. By the previous lemma it is enough to show that G is not super strongly fractal. In [7, Thm. 2.4]
it is shown that |G : StabG (L2)| = pt+1, where t is the rank of the circulant matrix whose first row
is (1, ... , 1, 0). In this case the rank is p. It is also proved in [7, Thm. 2.14] that |G : StabG (L1)′| =
pp+1. The mentioned paper is written for p an odd prime, but these two results are also true for p =
2. Since StabG (L1)/ StabG (L2) is abelian we know that StabG (L1)′ ⊆ StabG (L2), so we conclude that
StabG (L2) = StabG (L1)′. Now StabG (L1)′ = 〈[bi , bj ] | i , j = 1, ... , p〉G . Observe that ψ([bi , bj ]) =
(1, ... , 1, [a, b]

j
, 1, ... 1, [b, a]

i
, 1 ... , 1). By Corollary 2.11, we conclude that

ψx1(StabG (L2)) = ψx1(StabG (L1)′) = 〈[a, b], [b, a]〉G = G ′.

Now again, ψ([a, b]) = ψ(b−11 b) = (b−1a, 1, ... , 1, a−1b). By the same argument as before, we have

ψx1(G ′) = ψx1(〈[a, b]〉G ) = 〈b−1a〉G .

But then, for the vertex u = x1x1 ∈ L2, we have that ψu(StabG (L2)) = 〈b−1a〉G . It is not hard to see that
G/G ′ ∼= Cp×Cp (see [7, Thm. 2.1]). Since the image of 〈ba−1〉G in G/G ′ is cyclic, we have 〈ba−1〉G 6= G ,
and G is not super strongly fractal.

5. Groups which are super strongly fractal

In the same family of GGS-groups, we have examples of groups which are super strongly fractal. More
specifically, the GGS-groups which are periodic (or, equivalently, those having defining vector e such that
e1 + · · ·+ ep−1 ≡ 0 (mod p), see [12, Thm. 1]) are examples of super strongly fractal groups.

Proposition 5.1. Let G be a GGS-group with defining vector e = (e1, ... , ep−1) such that e1+· · ·+ep−1 ≡ 0
(mod p). Then G is super strongly fractal.

Proof. By [7, Lem. 3.3] we know that, for n ≥ 3, ψ(StabG (Ln)) = StabG (Ln−1)×
p
· · ·×StabG (Ln−1). Since

we also know that ψx(StabG (L1)) = G for every x ∈ X , it only remains to show that ψx(StabG (L2)) =
StabG (L1) for each x ∈ X . Since G contains the rooted automorphism a, by Remark 2.13, it is enough to
check the condition in one vertex.

Let us consider the element g = b1b2 · · · bp−1b. We have

ψ(g) = (bae1+···+ep−1 , ae1+···+ep−1be2+···+ep−1 , ae1+···+ep−1be3+···+ep−1 , ... , ae1+···+ep−1b)

= (b, be2+···+ep−1 , be3+···+ep−1 , ... , b)

so, we conclude that g ∈ StabG (L2). On the other hand, since G is strongly fractal by Corollary 2.11,
we have ψx1(StabG (L2)) ≥ ψx1(〈g〉G ) = 〈b, be2+···+ep−1 , be3+···+ep−1 , ... , b〉G = StabG (L1), and we have
finished.

In [9, pag. 85], it is said that being strongly fractal implies being super strongly fractal, and also that
the first Grigorchuk group is an example of this. It is true that the first Grigorchuk group is super strongly
fractal, but it is not a direct consequence of being strongly fractal. The proof of this is similar to the
previous example.

http://reportsascm.iec.cat42

http://reportsascm.iec.cat


Jone Uria-Albizuri

Definition 5.2. Let T be the 2-adic tree. The first Grigorchuk group, denoted by G, is the group generated
by the automorphisms a, b, c , d defined as:

a(∅) = (12), ψ(a) = (1, 1),

b, c , d ∈ Stab(L1), ψ(b) = (a, c), ψ(c) = (a, d), ψ(d) = (1, b).

Proposition 5.3. The group G is super strongly fractal.

Proof. In [1, Thm. 4.3] it is shown that ψ(StabG(Ln)) = StabG(Ln−1) × StabG(Ln−1), for n ≥ 4. Since
a ∈ G , by Lemma 2.12 it suffices to show that 〈ψun(StabG(Ln)) | un ∈ Ln〉 = G when n = 1, 2, 3.

For n = 1 this follows directly from the definition of the elements b, c , d . To see the cases n = 2 and
n = 3, it is easy to calculate and check that d , (ab)4, (ac)4 ∈ StabG(L2) and that

ψx2x1(d) = a,

ψx2x2(d) = c ,

ψx2x2((ab)4) = ad ,

ψx2x2((ac)4) = b.

To conclude, the element g = (ab)4(adabac)2 belongs to StabG(L3) and

ψx1x2x1(g) = d ,

ψx1x2x2(g) = ba,

ψx2x2x1(g) = a,

ψx2x2x2(g) = c .

This proves that G is super strongly fractal.
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1. Introduction

Strong evidences suggest that all living organisms share a common ancestor and therefore, are related by
evolutionary relationships. These relationships are usually expressed in the form of a phylogenetic tree.

Nowadays there are more and more mathematicians and statisticians who collaborate with biologists in
order to solve the major problems of phylogenetics. Many different areas of mathematics, like statistics,
probability, algebra, combinatorics and numerical methods are involved in phylogenetic studies. Even more,
recently developed techniques from algebraic geometry have already been used in the study of phylogenetics.

The main goal of phylogenetic reconstruction is recovering the ancestral relationships among a group
of current species. In order to reconstruct phylogenetic trees it is necessary to model evolution adopting
a parametric statistic model. Using these models one is able to deduce polynomial relationships between
the parameters of the model, known as phylogenetic invariants. Mathematicians have recently begun to be
interested in the study of these polynomials and the geometry of the algebraic varieties that arise in this
setting. Furthermore, they have started to use some phylogenetic invariants called topology invariants to
reconstruct phylogenetic trees; see [4, 8].

The aim of this paper is to understand the relationship between phylogenetics and these algebraic
techniques to recover phylogenetic trees from real data. Our main goal is to study and to analyze the
characterizations of stochasticity of the points in the algebraic varieties mentioned above, and provided
in [5].

The paper is divided into two parts. In the first one, we explain basic concepts on phylogenetics that
are already known. We explain what phylogenetic trees are from the mathematical standpoint, we describe
the general Markov model, and we explain then what phylogenetic invariants and topology invariants are.
Moreover, we define joint distributions of a tree and its representation as a tensor. We will define some
operations among tensors that will be useful, and their meaning in terms of phylogenetic trees. This part
will be developed in Section 2. After that, in Section 3, we will revisit results related to the stochasticity of
the parameters of the general Markov model on a tree. One of these results, [5, Theorem 3.2.4], has been
restated and the proof rewritten since the statement of the original theorem is not completely correct. We
also provide a counterexample to show this; see Counterexample 3.8. Finally, in Theorem 3.11 we present
new topology invariants that can be used to design original methods for phylogenetic reconstruction; see [10]
for further details.

2. Preliminaries

2.1 Biological preliminaries

Phylogenetics is the study of relationships between different species or biological entities. It studies how
species evolve and where contemporary species come from. According to the theory of the biological
evolution developed by Darwin (s.XIX), all species of organisms evolve through the natural selection of
small variations that increase the individual’s ability to compete, survive, and reproduce. We can model
these specialization processes with phylogenetic trees. The nodes of these trees represent different species
and every branch is an evolutionary process between two species. The leaves of the tree are contemporary
species and the root of the tree is the common ancestor of all the species represented on the tree.
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Genetic information of each individual is encoded in the DNA of the nucleus of its cells, which is
composed of four different simpler units named nucleotides. According to the bases forming the nucleotides,
they are called adenine (A), cytosine (C), guanine (G) and thymine (T).

Heredity information in a genome is thought to be contained in genes. But DNA sequences of a same
gene may look quite different for different species. They contain similar parts but they can also contain
some other parts that can not be compared. For that reason the first problem is identifying which part
of DNA sequences of different species can be compared. This information is collected in an alignment.
A sequence alignment is a way of arranging the sequences of DNA to identify regions of similarity that
may be a consequence of functional, structural, or evolutionary relationships between the species. We can
represent an alignment with a table whose rows are DNA sequences of the species and whose columns
correspond to nucleotides evolved from the same nucleotide at the common ancestor of all the species in
the table. Alignments are used in many contexts, phylogenetics among them, to see relationships between
some species and to reconstruct the phylogenetic tree relating them.

One of the basic objects in a phylogenetic model is a tree T encoding the evolutionary relationships
among a given set of species. In this section we introduce some concepts that allow us to deal with these
phylogenetic trees following the approach in [2, 3, 6].

Definition 2.1. A tree T is a connected graph with no cycles. The degree of a vertex is the number of
edges incident to it. The vertices of degree 1 are called leaves and the set of leaves of T is denoted by
L(T ). All the other vertices, which have degree at least 2, are interior nodes and are designated by the
set Int(T ). E (T ) is the set of the edges of the tree. If all nodes in Int(T ) have degree 3, then T is called
a trivalent tree. A tree is called a rooted tree if one vertex has been labelled as “root”, and the edges
are oriented away from it. A phylogenetic tree is a pair (T , φ), where T is a tree and φ : X → L(T ) is
a one-to-one correspondence between the set of leaves and a finite set of labels denoted be X . The tree
topology of a phylogenetic tree is the topology of the tree as a labelled graph.

In a phylogenetic tree, the set X represents a set of living species and the tree T shows the ancestral
relationships among them. Every edge represents an evolutionary process between two species and if it is
rooted, then the root represents the common ancestor to the set of species X . For our purposes, usually
X will be taken as the set {1, 2, ... , n}. Moreover, two phylogenetic trees T1 and T2, with the same set
of labels X at the leaves, have the same topology if there is a one-to-one correspondence ϕ between their
vertices respecting adjacency and leaf labelling. If r1, r2 are the roots of T1 and T2, respectively, then we
need to impose ϕ(r1) = r2.

Remark 2.2. For the rest of the paper, we denote by Tn the set of all possible tree topologies for n-leaf
unrooted trivalent trees. Note that n has to be greater or equal than 3 (|T3| = 1). We will denote the
three possible topologies of T4 by T12|34, T13|24, and T14|23; see left hand side of Figure 1.

2.2 Evolutionary models

Evolution is usually modeled adopting a parametric statistical model. That is, evolution is assumed to be
a stochastic process, in which nucleotides mutate randomly over time according to certain probabilities.
Moreover we assume that DNA substitutions occur randomly and the nucleotides observed in the DNA
sequences are independent and identically distributed.

We associate a discrete random variable Xi to each node i of T such that Xi can take κ different
states. We denote by K this set of states. Usually K is the set of the four nucleotides in DNA, which are
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Figure 1: Left: the three topologies of T4, say T12|34, T13|24, and T14|23. Right: a Markov process on a
rooted 4-leaf tree given by a distribution vector π and transition matrices {M1, ... , M6}.

denoted by their first letter, so K = {A, C, G, T} and κ = 4. Since DNA sequences of the contemporary
species are known, we say that random variables at the leaves are observed. However, we do not have any
information about the ancestral species, that is why random variables at the interior nodes are hidden. For
a tree T with leaves 1, 2, ... , n, X = (X1, X2, ... , Xn) represents the joint distribution vector of the leaves.
Each column of an alignment is an observation of this vector of random variables.

Hereafter we introduce a Markov process in a rooted tree T . First, we define a vector π = (π1, ... ,πκ),
the distribution of Xr which is the random variable associated to the root r and satisfying that all entries
are nonnegative and

∑
i πi = 1. If K = {A, C, G, T}, we interpret these entries as the probabilities that

an arbitrary site in the DNA sequence at the root is occupied by the corresponding base. A second set
of parameters is associated to the evolutionary process that occurs in every edge. For each edge e we
associate a κ× κ matrix Me , called substitution or transition matrix.

Definition 2.3. A transition matrix is a κ × κ matrix Me associated to each edge of a phylogenetic
tree. Every entry is the conditional probability P(x |y , e) that a state y at the parent node of e had been
substituted by a state x at its child, during the evolutionary process along the edge e. Since each row
contains the probabilities of the κ possible changes that can occur in an evolutionary process, rows of Me

sum up to 1. These matrices Me are also called Markov matrices or row stochastic matrices.

We consider a Markov process on T given by π and the matrices {ME}e∈E(T ). In particular, the
substitutions on two adjacent branches at a node v are independent given the state at v .

The substitution probabilities on a given edge depend only on the state at the parent node. Besides,
we only have observations of the random variables at the leaves so, ours is a hidden Markov process.
According to the shape of the transition matrices different models are defined, but in this paper we focus
on the general Markov model, that is, transition matrices do not satisfy any other restriction.

Example 2.4. On the right hand side of Figure 1, a Markov process on a phylogenetic tree is represented.
The X ′i s are random variables associated to the leaves, the M ′i s are the transition matrices, and πr is the
root distribution. Under the general Markov model, we have 3 × 4 free parameters for each transition
matrix and 3 free parameters for the vector πr . Therefore, this model has 3 ·4 ·6 + 3 = 75 free parameters.

In what follows we describe how to compute the joint probability of observing states x1, x2, ... , xn at
the leaves according to the Markov process we have described.
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We denote by px1,...,xn the joint distribution at the leaves of a rooted phylogenetic tree T , px1,...,xn =
Prob(X1 = x1, X2 = x2, ... , Xn = xn). We define P as a κn-dimensional vector whose components are the
joint probabilities px1,...,xn , P = (px1,...,xn)x1,...,xn∈K.

Since the evolutionary processes follow a Markov process, they are independent and we can express
px1,...,xn in terms of the transition matrices,

px1,...,xn =
∑

xr ,(xv )v∈Int(T )

∏
e∈E(T )

Me(xa(e), xd(e)), (1)

where xr ∈ K is a state of the root, xa(e) ∈ K is a state of the parent node of the edge e, and xd(e) ∈ K is
the state of the descendant node of the edge e. If e is a terminal edge ending at the leaf i then xd(e) = xi .
Every entry of P can be seen as a polynomial with the parameters of the model M as variables.

Example 2.5. We compute now the joint distribution px1,x2,x3,x4 of the tree presented on the right hand
side of Figure 1. Using equation (1) we get

px1,x2,x3,x4 =
∑
xr∈K

∑
x5∈K

∑
x6∈K

πxr ·M5(xr , x5) ·M1(x5, x1) ·M2(x5, x2) ·M6(xr , x6) ·M3(x6, x3) ·M4(x6, x4).

2.3 Phylogenetic invariants and flattening

It is known that there exist many algebraic relations among the components of the joint distribution P;
see [4, 6, 7, 9].

Since components of P are polynomials in the model parameters, we can associate to the tree a
polynomial map ϕT : Cd → Cκn

mapping any d-tuple of parameters to a distribution vector of the κn

possible observations at the leaves of T . More precisely, we define the map

ϕT : Cd −→ Cκn

(π, {Me}e∈E(T )) 7→ P = (px1,x1,...,x1 , px1,x1,...,x2 , px1,x1,...,x3 , ... , pxκ,xκ,...,xκ),
(2)

where d is the number of free parameters of the model and each component px1,...,xn is expressed in terms
of the root distribution π and the transition matrices Me according to the expression (1).

Remark 2.6. Notice that, to read the parameters as probabilities, we should restrict to nonnegative real
numbers. Analogously, the points in the image of ϕT represent a joint distribution only if they lie in the
standard (κn − 1)-simplex. However, in order to use techniques from algebraic geometry, we abandon
temporally these restrictions and work over the complex field. We will consider complex parameters and
complex parametrization map in general, but we will refer to stochastic parameters to the ones coming
from the original probabilistic model (that is, all the components of π and the entries of the transition
matrices Mi are nonnegative).

We introduce now an algebraic variety in Cκn
which contains the set of image points of ϕT .

Definition 2.7. The phylogenetic variety associated to a tree T , denoted by V(T ), is the smallest algebraic
variety containing the image ImϕT .

Remark 2.8. The image set ImϕT is not, in general, an algebraic variety, but it defines a dense open subset
in V(T ) under Zariski topology. The ideal I (ImϕT ) of all polynomial relations in C[Px1,...,xn ] of the points
in Im(ϕT ) coincides with the ideal of the variety V(T ). We will denote it by I (T ). It can be proved that
V(T ) is independent from the node chosen as root in T ; see [1] for a complete proof.
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Definition 2.9. The polynomials in I (T ) are called phylogenetic invariants of T . If f is a polynomial
in IM(T ) that does not belong to I (T ′) for some other tree topology T ′ on n leaves, then f is called a
topology invariant of T .

Definition 2.10. Let A|B be a partition of the leaves of a tree T , that is A, B ⊆ L(T ), with |A|, |B| ≥ 2
such that L(T ) = A ∪ B and A ∩ B = ∅. Let X̃A = (xi )i∈A and X̃B = (xj)j∈B be the random variables
associated to A and B. Then X̃A and X̃B can take a := κ|A| and b := κ|B| states, respectively. Given
a vector P ∈ Cκn

we define the flattening FlattA|B(P) as the a × b matrix whose entries are the joint

distributions of all possible observations of X̃A and X̃B :

jsdhgakjaksjdhsdfhsfj lsjfdStates of X̃B

FlattA|B(P) =
States of

X̃A


pu1v1 pu1v2 · · · pu1vb

pu2v1 pu2v2 · · · pu2vb
...

...
. . .

...
puav1 puav2 · · · puavb

 .

This matrix allows us to state the following result, which gives us some topology invariants associated
to a 4-leaf tree.

Theorem 2.11 (Casanellas–Fernández-Sánchez, [8]). Let T be a tree, A|B a bipartition of L(T ) and
P = ϕT (π, {Me}e∈E(T )). Then the (κ + 1) × (κ + 1) minors of FlattA|B(P) vanish if A|B is induced by
removing an edge of T . Otherwise, FlattA|B(P) has rank ≥ κ2 for general P. Therefore, the (κ+1)×(κ+1)
minors of FlattA|B(P) are topology invariants for the tree T .

There is a more algebraic way of viewing the joint distribution at the leaves of a phylogenetic tree,
which will be really useful in this article.

Let W := Cκ be regarded as a vector space. We identify the canonical basis of W with the set K.

Then, the natural basis of W ⊗
n)
· · · ⊗W is {x1 ⊗ · · · ⊗ xn}x1,...,xn∈K. For instance, if K = {A, C, G, T}, the

natural basis of W ⊗W ⊗W is {A⊗ A⊗ A, A⊗ A⊗ C, ... , T⊗ T⊗ T}. Back to the description of the
joint distribution P = (px1,...,xn)x1,...,xn∈K in the phylogenetic framework, we can think of P as a n-tensor

in W ⊗
n)
· · · ⊗W whose components in the natural basis above are P = (px1,...,xn)x1,...,xn∈K:

P =
∑

x1,...,xn∈K
px1,...,xnx1 ⊗ · · · ⊗ xn.

Each factor in W ⊗
n)
· · · ⊗ W corresponds to one specie so, in order to make species apparent in this

tensor product, we denote it as W1 ⊗ · · · ⊗ Wn, where Wi = W for every i = 1, ... , n. If we view the
vector of joint distribution P as a tensor in W1 ⊗ · · · ⊗Wn then, keeping the notation of Definition 2.10,
the flattening FlattA|B(P) is the image of P via the isomorphism

W1 ⊗ · · · ⊗Wn
∼= Hom(

⊗
i∈A
Wi ,

⊗
j∈B
Wj) ∼= Ma×b(C),

P 7−→ FlattA|B(P)

where Ma×b(C) is the space of all a× b matrices with complex entries.
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Notation 2.12. For the rest of the paper, given a vector v ∈ Cκ, v(i) will be the i-th component of v
relative to the canonical basis {e1, ... , eκ} of Cκ, and we will write 1 for (1, ... , 1). Moreover, we will call

an n-tensor to the tensors P ∈ Cκ ⊗
n)
· · · ⊗ Cκ, and it will be convenient to write P(x1, ... , xn) for the

component px1,...,xn .

Definition 2.13. Given an n-tensor P, an integer i ∈ {1, ... , n} and a vector v ∈ Cκ, we define P ∗i v the
(n− 1)-tensor given by (P ∗i v)(j1, ... , ji−1, ji+1, ... , jn) =

∑κ
ji=1 v(ji )P(j1, ... , ji , ... , jn). We also define the

l -th slice of P in the i-th index by P···l ··· = P∗i el, The i -th marginalization of P is defined as P···+··· = P∗i 1.
Given a κ× κ matrix M, we define the n-tensor P ∗i M by

(P ∗i M)(j1, ... , jn) =
κ∑

l=1

P(j1, ... , ji−1, l , ji+1, ... , jn)M(l , ji ). (3)

Remark 2.14. From now on, we consider the 2-tensors as κ× κ matrices via the isomorphism

P =
∑

P(j1, j2)ej1 ⊗ ej2 ↔ (P(j1, j2))j1,j2 ,

where rows of the matrix are indexed by the first component, and columns by the second.

3. Theoretical results

3.1 Transforming tensors

In this section we state some technical results related to marginalizations and slices of tensors that arise
from stochastic parameters of the general Markov model on a tree T . For a complete proof of these results
see [10].

Lemma 3.1. Let P be a 3-tensor in the image of parameters for the general Markov model, P =
ϕ(π, {M1, M2, M3}), where T is a trivalent 3-leaf tree. Then, the three possible marginalizations of P
are given by

P..+ = Mt
1diag(π)M2, P.+. = Mt

1diag(π)M3, P+.. = Mt
2diag(π)M3. (4)

And the slices of P are

P..i = MT
1 diag(M3ei)diag(π)M2, P.i . = MT

1 diag(M2ei)diag(π)M3, Pi .. = MT
2 diag(M1ei)diag(π)M3.

(5)

Corollary 3.2. Let P be a tensor arising from parameters of the general Markov model on T with tree
topology T12|34, P = ϕT12|34(π; M1, M2, M3, M4, M5) (see the left hand side of Figure 2). Then the double
marginalizations P+..+, P+.+., P.+.+ and P.++. can be computed in terms of the transition matrices as
follows:

P+..+ = MT
2 diag(π)M5M3, P+.+. = MT

2 diag(π)M5M4,
P.+.+ = MT

1 diag(π)M5M3, P.++. = MT
1 diag(π)M5M4.
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Figure 2: Left: Rooted 4-leaf tree T12|34 with transition matrices {M1, M2, M3, M4, M5}. Right: Rooted
4-leaf tree T12|34 with transition matrices {M1, M1, M4, M4, M5}.

The following lemma describes how, given a tensor in the image of ϕT for a 4-leaf tree T , we can
produce a new tensor still in ImϕT . This is done by multiplying the original tensor with a matrix (in the
sense of (3)), which has the effect of changing the transition matrix of an exterior edge of the tree.

Lemma 3.3. Let P be a 4-tensor for the general Markov model, P = ϕT (π; M1, ... , M5). If Mi is non
singular for some i = 1, 2, 3, 4, then the tensor P̄ = P ∗i (M−1i M) is the image of the same parameters as
P except for Mi which has been replaced by M.

3.2 Stochasticity conditions

In this section we will discuss some theoretical results that will allow us to provide some conditions to
ensure that a tensor of a joint distribution comes from stochastic parameters.

Definition 3.4. A set {π, {Me}e∈E(T )} of stochastic parameters for the general Markov model on a tree
T with root r is called nonsingular if

(i) at every node j of T the distribution of the random variable Xj has no zero entry;

(i) the matrix Me of every edge e is nonsingular.

Remark 3.5. For stochastic parameters and assuming (ii), condition (i) in the previous definition is equiv-
alent to requiring that the root distribution πr has no zero entry.

The following result has been proved in [5]. As we do not use it specifically, we do not include the
proof here.

Theorem 3.6 (Allman–Rhodes–Taylor, [5]). Let P be a (either real or complex) 3-tensor. Then, P arises
from nonsingular parameters for the general Markov model with κ parameters on the 3-leaf tree if and only
if the following conditions hold:

(i) fi (P; x) 6= 0 for an arbitrary vector x and some i = 1, 2, 3, where fi (P; x) = det Hx ((det(P ∗i x)))
and Hx denotes the Hessian operator;

(ii) det(P ∗i 1) 6= 0 for i = 1, 2, 3.

We want to find a similar characterization of P for stochastic parameters. That is, we want to find
some conditions allowing us to distinguish when a tensor P is the image of positive real parameters.
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Theorem 3.7. Let P = ϕT (π, {M1, M2, M3}) be a 3-tensor with π, {Mi}i having real entries. Then,

(1) P is the image of nonsingular stochastic parameters for the general Markov model on the 3-leaf
tree if and only if its components are nonnegative, they sum up to 1, conditions (i) and (ii) from
Theorem 3.6 are satisfied, and

(iii) the matrix

det(P..+)PT
+..adj(P..+)P.+. (6)

is positive definite, and the following matrices are positive semidefinite for i = 1, ... ,κ

det(P..+)PT
i ..adj(P..+)P.+., det(P..+)PT

+..adj(P..+)P.i ., det(P+..)P.+.adj(P+..)PT
..i . (7)

(2) P is the image of nonsingular real positive parameters if and only if its components are positive, they
sum up to one, conditions (i) and (ii) are satisfied, and

(iii’) all matrices in (6) and (7) are positive definite.

In both cases, the nonsingular parameters are unique up to label swapping.

Proof. The proof of this theorem is essentially the same as in [5], but for real parameters. Let P be an
arbitrary nonnegative 3-tensor whose components sum up to 1. Assuming (i) and (ii) and using Theo-
rem 3.6, P is the image of nonsingular parameters. We want to see that condition (iii) is equivalent to these
parameters being nonnegative. To this aim, we are going to analyze what is the meaning of expressions (6)
and (7).

Let P̄ = P+..P
−1
..+P.+., using expressions proved in Lemma 3.1 we compute

P̄ = PT
+..P

−1
..+P.+. = (MT

2 diag(π)M3)T (MT
1 diag(π)M2)−1(MT

1 diag(π)M3)

= MT
3 diag(π)M3.

(8)

This is a well defined symmetric matrix since P..+ is nonsingular. Since M3 is real, P̄ is a positive
definite matrix if and only if

xT P̄x = xTMT
3 diag(π)M3x = (M3x)Tdiag(π)(M3x) > 0, ∀x 6= 0.

Since M3 is nonsingular, it can be understood as a change of basis and hence P̄ is positive semidefinite if
and only if the entries of diag(π) are all positive. We clear denominators and obtain an algebraic expression
multiplying this matrix by the square of the appropriate nonzero determinant. It follows that (6) is positive
definite if and only if π is positive.

Using the expressions in Lemma 3.1, we have

PT
i ..P
−1
..+P.+. = (MT

2 diag(M1ei)M3)T (MT
1 diag(π)M2)−1(M1diag(π)M3) =

= MT
3 diag(π)diag(M1ei)M3.

This matrix is also symmetric, and it is positive semidefinite if and only if the entries of diag(π)diag(M1ei)
are nonnegative. Since π is a positive vector, we need the i-th column of M1 being nonnegative. Using the
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matrices PT
+..P

−1
..+P.i . and PT

..+P−1+..P..i we can also impose the conditions of the i-th column of M2 and M3

being nonnegative. This proves (1).

If the matrices of (6) and (7) are positive definite, we can repeat this proof but requiring positiveness
of the parameters. This proves (2).

In order to clear denominators and obtain an algebraic expression, we multiply all these matrices by the
square of the appropriate nonzero determinant which does not change the sign and gives us expressions (6)
and (7).

Counterexample 3.8. In paper [5], Theorem 3.7 is announced for general tensors P, that is, for P =
ϕT (π, {M1, M2, M3}) where π, M1, M2 and M3 are complex. But we provide here a counterexample to
show that if M3 is not real, diag(π) being positive does not imply P̄ = MTdiag(π)M being positive
definite; see (8). For κ = 2 let us consider the matrices

D =
1

2

(
1 0
0 1

)
and M =

1

4

(
2 + i 2− i
2− i 2 + i

)
.

However, the matrix MTDM =
1

16

(
3 5
5 3

)
is not positive definite.

Moreover, the reverse implication is not true either. For instance, for the positive definite matrix

P̄ = MTDM =

(
8 0
0 8

)
,

we have the following decomposition, where D is not positive: D =

(
−1 0
0 4

)
, M =

(
2i −2i
1 1

)
.

Due to this counterexample we are forced to restrict the statement of the above theorem to the case
of real matrices.

Assuming now that an n-tensor P arises from nonsingular parameters on a tree, we would like to give
some semialgebraic conditions that are satisfied if and only if P comes from stochastic parameters. If we
consider marginalizations of P to three variables and using Theorem 3.7, we can derive conditions that
hold when the root distribution and the product of matrices associated to any path from an interior node
to a leaf are stochastic. Nevertheless, we need some extra conditions to guarantee matrices of the interior
edges being stochastic.

The following result gives us a condition for all parameters of the 12|34 tree being stochastic.

Theorem 3.9 (Allman–Rhodes–Taylor, [5]). Let P be a 4-tensor. Suppose P arises from nonsingular real
parameters for the general Markov model on T12|34. If the marginalizations P+... and P...+ arise from
stochastic parameters and, moreover, the κ2 × κ2 matrix

det(P+..+)det(P.+.+)Flatt13|24

(
P ∗2

(
adj(PT

+..+)PT
.+.+

)
∗3
(
adj(P.+.+)P.++.

))
(9)

is positive semidefinite, then P arises from stochastic parameters.

Proof. The root r is placed at the interior node near leaves 1 and 2, as we can see in the tree presented
on the left of Figure 2. Let Mi , i = 1, 2, 3, 4, be the complex matrix associated to the edges leading to
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leaves, M5 the matrix on the internal edge, and π the root distribution. The rows of these matrices sum
up to 1. We define the four matrices

N32 = PT
+..+ = MT

3 MT
5 diag(π)M2, N31 = PT

.+.+ = MT
3 MT

5 diag(π)M1,
N14 = P.++. = MT

1 diag(π)M5M2, N13 = P.+.+ = MT
1 diag(π)M5M3.

(10)

We define now a tensor P̄ arising from the same parameters as P except that M2 has been replaced by M1

(see Lemma 3.3) and, similarly, a tensor P̃ arising from the same parameters as P̄ but with M4 instead of
M3:

P̄ = P ∗2 N−132 N31 = P ∗2 M−12 M1, P̃ = P̄ ∗3 N−113 N14 = P̄ ∗3 M−13 M4. (11)

We can express

Flat13|24(P) = (M1 ⊗M3)TD(M2 ⊗M4), (12)

where D is the diagonal matrix containing the κ2 entries of diag(π)M5; see [10] for further details. Since
P̃ arises from the same parameters that P except that M2 has been replaced by M1 and M3 by M4, we
can write Flat13|24(P̃) = (M1 ⊗M4)TD(M1 ⊗M4).

Since the 3-marginalization arises from stochastic parameters, M1 and M4 are nonsingular and the
components of π are positive. Thus, M1 ⊗M4 is also nonsingular. All principal minors of Flat13|24(P̃) are

nonnegative if and only if Flat13|24(P̃) is positive semidefinite. Then we have to require the entries of D to
be nonnegative and so, since π has positive components, we can ensure that M5 has nonnegative entries.
By multiplying Flat13|24(P̃) by the square of the appropriate nonzero determinant, we clear denominators
and obtain the algebraic expressions stated in the theorem.

Remark 3.10. The theoretical results proved in this section complement the algebraic description of the
model (given by topology invariants) with a semialgebraic description of the points with stochastic sense.
In other words, as well as finding polynomials vanishing on the image of the parametrization map, we have
found polynomial inequalities sufficing to characterize the stochastic image.

The conditions of matrices being positive definite/semidefinite can be expressed as semialgebraic con-
ditions using Sylvester’s criterion, which claims that a real symmetric matrix is positive definite (resp.,
positive semidefinite) if and only its leading principal minors are positive (resp., nonnegative).

On the other hand, the replacements of inverses in (11) by adjoint matrices in (9) is not only done in
order to have semialgebraic conditions, but also to avoid dealing with the inverse of ill conditioned matrices.

Let P be the tensor used in Theorem 3.9 and P̃ the one constructed in (11). Since P̃ arises from the
same parameters that P except that M2 has been replaced by M1 and M3 by M4, it is the joint distribution
of the tree presented on the right hand side of Figure 2. Observing the symmetry of the exterior transition
matrices we can state the following result.

Theorem 3.11. Let P be a 4-tensor whose components sum up to 1. Suppose that

P = ϕT (π, M1, M2, M3, M4, M5),

with T = T12|34, and let P̃ be constructed as in (11). Then,

Flat13|24(P̃) = Flat14|23(P̃) and Flatt12|34(P̃) 6= Flatt13|24(P̃). (13)
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In particular, the equality of matrices

det(P+..+)det(P.+.+)Flatt13|24

(
P ∗2

(
adj(PT

+..+)PT
.+.+

)
∗3
(
adj(P.+.+)P.++.

))
=

= det(P+..+)det(P.+.+)Flatt14|23

(
P ∗2

(
adj(PT

+..+)PT
.+.+

)
∗3
(
adj(P.+.+)P.++.

))
gives rise to 256 topology invariants of degree 17.

Proof. Using (12), and the fact that, in P̃, M2 has been replaced by M1, and M3 by M4, we have

Flat13|24(P̃) = (M1 ⊗M4)TD(M1 ⊗M4) = Flat14|23(P̃). (14)

In contrast, Flatt12|34(P̃) = M̄T
1 diag(π)M̄4, where M̄1(xi , (xj , xk)) = M1(xi , xj)M1(xi , xk), M̃4(xi , (xj , xk)) =∑κ

l=1 M5(xi , xl)M4(xl , xj)M4(xl , xk), is, in general, not equal to (14).

The expression Flat13|24(P̃) = Flat14|23(P̃) provides 16 × 16 equalities between entries. By (9), these
entries are algebraic expressions in terms of components of P. Moreover, because of (13), these equalities
are not satisfied by any distribution arising from a tree and then they are topology invariants.

Finally, regarding (9), we infer the degree of these expressions in the components of P:

(i) the two determinants have degree 4 each, which makes degree 8;

(ii) the components of the tensors adj(PT
+..+)PT

.+.+ and adj(P.+.+)P.++. have degree 4.

The ∗ operation adds degrees, so we obtain a tensor of degree 1 + 4 + 4 = 9 before applying Flat13|24(·).
Altogether gives a tensor with components of degree 8 + 9 = 17.

4. Conclusions

In this paper, we have seen that the conditions of stochasticity on the parameters from Theorem 3.9 are
enough to ensure that the 4-tensor arising from real nonsingular parameters under the general Markov
model comes from stochastic parameters. From these conditions we have been able to find new topology
invariants. So, we can extract the following conclusions:

(i) we have disentangled the theoretical results of stochastic conditions of the parameters and we have
provided a counterexample to an error in a proof of [5] as well;

(ii) using the ideas from the proof of Theorem 3.9 we have provided 256 topology invariants of degree
17.

However, there is still further research to do:

(i) check whether the new topology invariants we found are sufficient to describe the phylogenetic
algebraic variety;

(ii) check if these conditions can be used with real data, in order to give new information that can be
used in some phylogenetic reconstruction method.
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